
”This is an Author’s Original Manuscript of an Article whose final and definitive form, the

Version of Record, has been published in the Journal of New Music Research, Volume 43, Issue 1,

31 Mar 2014, available online at: http://www.tandfonline.com/doi/full/10.1080/09298215.

2013.864681.”

Linking Scores and Audio Recordings
in Makam Music of Turkey
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Abstract

The most relevant representations of music are notations and audio recordings, each of which

emphasizes a particular perspective and promotes different approximations in the analysis and un-

derstanding of music. Linking these two representations and analyzing them jointly should help to

better study many musical facets by being able to combine complementary analysis methodologies.

In order to develop accurate linking methods, we have to take into account the specificities of a

given type of music. In this paper, we present a method for linking musically relevant sections

in a score of a piece from makam music of Turkey (MMT) to the corresponding time intervals of

an audio recording of the same piece. The method starts by extracting relevant features from the

score and from the audio recording. The features of a given score section are compared with the

features of the audio recording to find the candidate links in the audio for that score section. Next,

using the sequential section information stored in the score, it selects the most likely links. The

method is tested on a dataset consisting of instrumental and vocal compositions of MMT, achieving

92.1% and 96.9% F1-scores on the instrumental and vocal pieces, respectively. Our results show the

importance of culture-specific and knowledge-based approaches in music information processing.

Keywords: Music Information Retrieval, Knowledge-Based Methodologies, Multi-Modality,

Culture Specificity, Hough Transform, Directed Acyclic Graphs, Variable-Length Markov Models,

Makam Music of Turkey

1. Introduction

Music is a complex phenomenon and there are many types of data sources that can be used

to study it, such as audio recordings, scores, videos, lyrics and social tags. At the same time,
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for a given piece there might be many versions for each type of data, for example we find cover

songs, various orchestrations and diverse lyrics in multiple languages. Each type of data source

offers different ways to study, experience and appreciate music. If the different information sources

of a given piece are linked with each other (Thomas et al., 2012), we can take advantage of their

complementary aspects to study musical phenomena that might be hard or impossible to investigate

if we have to study the various data sources separately.

The linking of the different information sources can be done at different time spans, e.g. link-

ing entire documents (Ellis and Poliner, 2007; Martin et al., 2009; Serrà et al., 2009), structural

elements (Müller and Ewert, 2008), musical phrases (Wang, 2003; Pikrakis et al., 2003), or at

note/phoneme level (Niedermayer, 2012; Fujihara and Goto, 2012). Moreover there might be sub-

stantial differences between the information sources (even among the ones of the same type) such

as the format of the data, level of detail and genre/culture-specific characteristics. Thus, we need

content-based (Casey et al., 2008), application-specific and knowledge-driven methodologies to ob-

tain meaningful features and relationships between the information sources. The current state of

the art in Music Information Retrieval (MIR) is mainly focussed on Eurogenetic 1 styles of mu-

sic (Tzanetakis et al., 2007) and we need to develop methodologies that incorporate culture-related

knowledge to understand and analyze the characteristics of other musical traditions (Holzapfel,

2010; Şentürk, 2011; Serra, 2011).

In analyzing a music piece, scores provide an easily accessible symbolic description of many

relevant musical components. The audio recordings can provide information about the character-

istics (e.g. in terms of dynamics or timing) of an interpretation of a particular piece. Parallel

information extracted from score and audio recordings may facilitate computational tasks such

as version detection (Arzt et al., 2012), source separation (Ewert and Müller, 2012), automatic

accompaniment (Cont, 2010) and intonation analysis (Devaney et al., 2012).

In this paper, we focus on marking the time intervals in the audio recording of a piece with

the musically relevant structural elements (sections) marked in the score of the same piece (or

briefly “section linking”). The proposed method extracts features from the audio recording and

the sections in the score. From these features, similarity matrices are computed for each section.

The method applies Hough transform (Duda and Hart, 1972) to the similarity matrices in order

to detect section candidates. Then, it selects between these candidates by searching through the

paths, which reflect the sequence of sections implied by the musical form, in a directed acyclic graph

(DAG). We optimize the method for the cultural-specific aspects of makam music of Turkey (MMT).

By linking score sections with the corresponding fragments in the audio recordings, computational

operations that are specific to this type of music, such as makam recognition (Gedik and Bozkurt,

2010), tuning analysis (Bozkurt et al., 2009) and rhythm analysis can be done at the section level,

providing a deeper insight into the structural, melodic or metrical properties of the music.

1We apply this term because we want to avoid the misleading dichotomy of Western and non-Western music.
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The remainder of the paper is structured as follows: Section 2 gives an overview of related

computational research. Section 3 makes a brief introduction to makam music of Turkey. Sec-

tion 5 makes a formal definition of section linking and gives an overview of proposed methodology.

Sections 6-8 explains the proposed methodology in detail. Section 4 presents the dataset used

to test the methodology. Section 9 presents the experiments carried out to evaluate the method

and the results obtained from the experiments. Section 10 gives a discussion on the results, and

Section 11 concludes the paper.

Throughout the text, in the data collection and in the supplementary results, we use Mu-

sicBrainz Identifier (MBID) as an unique identifier for the compositions and audio recordings.

For more information on MBIDs please refer to http://musicbrainz.org/doc/MusicBrainz_

Identifier.

2. State of the Art

A relevant task to section linking is audio-score alignment, i.e. linking score and audio on the

note or measure level. Generally, if score and audio recording of a piece are linked on the note or

measure level, section borders in the audio can be obtained from the time stamps of the linked

notes/measures in the score and audio (Thomas et al., 2012). The current state-of-the-art on

audio-score alignment follows two main approaches: hidden Markov models (HMM) (Cont, 2010)

and dynamic time warping (DTW) (Niedermayer, 2012) . In general, approaches of audio-score

alignment assumes that the score and the target audio recording are structurally identical, i.e. there

are no phrase repetitions and omissions in the performance. Fremerey et al. (2010) extended the

classical DTW and introduced JumpDTW, which is able to handle such structural non-linearities.

However, due to the its level of granularity, audio-score alignment is computationally expensive.

Since section linking is aimed at linking score and audio recordings on the level of structural

elements, it is closely related to audio structure analysis (Paulus et al., 2010). The state of the

art methods on structure analysis are mostly aimed at segmenting audio recordings of popular

Eurogenetic music into repeating and mutually exclusive sections. For such segmentation tasks,

self-similarity analysis (Cooper and Foote, 2002; Goto, 2003) is typically employed. These methods

first compute a series of frame-based audio features from the signal. Then all mutual similarities

between the features are calculated and stored in a so-called self similarity matrix, where each

element describes the mutual similarity between the temporal frames. In the resulting square

matrix, repetitions cause parallel lines to the diagonal with 45 degrees and rectangular patterns in

the similarity matrix. This directional constraint makes it possible to identify the repetitions and

2-D sub-patterns inside the matrix.

When fragments of audio or score are to be linked, the angle of the diagonal lines in the

similarity matrix computed are not 45 degrees, unless the tempi of both information sources are

exactly the same. This problem also occurs in cover song identification (Ellis and Poliner, 2007;
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Serrà et al., 2009) for which a similarity matrix is computed using temporal features obtained

from a cover song candidate and the original recording. If the similarity matrix is found to have

some strong regularities, they are deemed as two different versions of the same piece of music.

A proposed solution is to “squarize” the similarity matrix by computing some hypothesis about

the tempo difference (Ellis and Poliner, 2007). However, tempo analysis in makam musics is

not a straightforward task (Holzapfel and Stylianou, 2009). The sections may also be found by

traversing the similarity matrices using dynamic programming (Serrà et al., 2009). On the other

hand, dynamic programming is a computationally demanding task.

Since the sections in a composition follow a certain sequential order, the extracted information

can be formulated as a directed acyclic graph (DAG) (Newman, 2010). Paulus and Klapuri (2009)

use this concept in self-similarity analysis. They generate a number of border candidates for the

sections in the audio recording and create a DAG from all possible border candidates. Then, they

use a greedy search algorithm to divide the audio recording into sections.

3. Makam Music of Turkey

The melodic structure of most traditional music repertoires of Turkey is interpreted using the

concept of makams. Makams are modal structures, where the melodies typically revolve around a

başlangıç (starting, initial) tone and a karar (ending, final) tone (Ederer, 2011). The pitch intervals

cannot be expressed using a 12-TET system (tone equal tempered), and there are a number of

different transpositions (ahenk) any of which might be favored over others due to instrument/vocal

range or aesthetic concerns (Ederer, 2011).

Currently Arel-Ezgi-Uzdilek (AEU) theory is the mainstream theory used to explain makam

music of Turkey (MMT) (Özkan, 2006). AEU theory divides a whole tone into 9 equidistant in-

tervals. These intervals can be approximated by 53-TET (tone equal tempered) intervals, each of

which is termed as a Holderian comma (1 Hc = 1200
53 ≈ 22.64 cents) (Ederer, 2011). AEU theory

defines the values of intervals based on Holderian commas (Tura, 1988), whereas the performers

typically change the intervals from makam to makam and according to personal preferences (Ed-

erer, 2011). Bozkurt et al. (2009) have analyzed selected pieces from renowned musicians to assess

the tunings in different makams, and showed that the current music theories are not able to explain

these differences well.

For centuries, MMT has been predominantly an oral tradition. In the early 20th century, a

score representation extending the traditional Western music notation was proposed and since then

it has become a fundamental complement to the oral tradition (Popescu-Judetz, 1996). The ex-

tended Western notation typically follows the rules of Arel-Ezgi-Uzdilek theory. The scores tend

to notate simple melodic lines but the performers extend them considerably. These deviations

include expressive timings, adding note repetitions and non-notated embellishments. The intona-

tion of some intervals in the performance might differ from the notated intervals as much as a

4



semi-tone (Signell, 1986). The performers (including voice in vocal compositions) usually perform

simultaneous variations of the same melody in their own register, a phenomenon commonly referred

to as heterophony (Cooke, 2013). These heterophonic interactions are not indicated in the scores.

Regarding the structure of pieces, there might be section repetitions or omissions, and taksims

(instrumental improvisations) in the performances.

In the paper, we focus on peşrev, saz semaisi (the two most common instrumental forms) and

şarkı (the most common vocal form) forms. Peşrev and saz semaisi commonly consists of four dis-

tinct hanes and a teslim section, which typically follow a verse-refrain-like structure. Nevertheless,

there are peşrevs, which have no teslim, in which case the second half of each hane strongly resem-

bles each other (Karadeniz, 1984). The 4th hane in the saz semaisi form is usually longer, includes

rhythmic changes and it might be divided into smaller substructures. Each of these substructures

might have a different tempo with respect to the overall tempo of the piece. There is typically no

lead instrument in instrumental performances.

A şarkı is typically divided into sections called aranağme, zemin, nakarat and meyan. The

typical order of the sections is aranağme, zemin, nakarat, meyan and nakarat. Except of the

instrumental introduction aranağme, all the sections are vocal and determined by the lines of

the lyrics. Each line in the lyrics is usually repeated, but the melody in the repetition might be

different. Vocals typically lead the melody; nonetheless heterophony is retained. Some şarkıs have

a gazel section (vocal improvisation), for which the lyrics are provided in the score, without any

melody.

4. Data Collection

For our experiments, we collected 200 audio recordings of 44 instrumental compositions (preşrevs

and saz semaisis), and 57 audio recordings of 14 vocal compositions (şarkıs) (i.e. 257 audio record-

ings of 58 compositions in total). The makam of each composition is included in the metadata.2

The pieces cover 27 different makams.

The scores are taken from the symbTr database (Karaosmanoğlu, 2012), a database of makam

music compositions, given in a specific text format, as well as PDF and as MIDI. The scores in

text form are in the machine readable symbTr format (Karaosmanoğlu, 2012), which contains note

values on 53-TET resolution and note durations. These symbTr-scores are divided into sections

that represent structural elements in makam music (Section 3). The beginning and ending notes

of each section are indicated in the instrumental symbTr-scores. In the vocal compositions the

sections can be obtained from the lyrics and the melody indicated in the symbTr-score. In this

paper we manually label each section in the vocal compositions according to these. The section

sequence indicated in the PDF formats is found in the symbTr-scores and MIDI files as well (i.e.

2The metadata is stored in MusicBrainz: http://musicbrainz.org/collection/

5bfb724f-7e74-45fe-9beb-3e3bdb1a119e
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Figure 1: Instrumentation and voicing in the dataset a) Instrumentation in the peşrevs and saz semaisis b) Voicing
in the şarkıs

following the lyric lines, the repetitions, volta brackets, coda signs etc. in the PDF). The duration

of the notes in the MIDI and symbTr-score are stored according to the tempo given in the PDF.

We divided the MIDI files manually according to the section sequence given in the symbTr-scores.

MIDI files include the microtonal information in the form of pitch-bends.

Three peşrevs (associated with 13 recordings) do not have a teslim section in the composition

but each section has very similar endings (Section 3). Nine peşrevs (associated with 40 recordings)

have less than 4 hanes in the scores. There are notated tempo changes in the 4th hanes of four saz

semaisi compositions (in the PDF), and the note durations in the related sections in the symbTr-

scores reflect these changes. In most of the şarkıs each line of the lyrics is repeated. Nevertheless,

the repetition occasionally comes with a different melody, effectively forming two distinct sections.

Two şarkı compositions include gazel sections (vocal improvisations).

The audio recordings are stored in mp3 format and the sampling rate is 44100 Hz. They are

selected from the CompMusic collection,3 and they are either in public-domain or commercially

available. The ground truth is obtained by manually annotating the timings of all sections per-

formed in the audio recordings. There are 1457 and 638 sections performed in the recordings of

the instrumental and vocal compositions, respectively (a total of 2095 sections). In all the audio

recordings, a section is repeated in succession at most twice. The mean and standard deviation of

the duration of each section in the audio recordings are 35.17 and 19.49 seconds for instrumental,

and 13.47 and 6.17 seconds for vocal pieces, respectively.

The performances contain tempo changes, varying frequency and kinds of embellishments,

and inserted/omitted notes. There are also repeated or omitted phrases inside the sections in

the audio recordings. Heterophonic interactions occur between instruments played in different

octaves. Figure 1a,b shows the instrumentation and voicing of the audio recordings in the dataset.

Among the audio recordings of instrumental compositions, ney recordings are monophonic. They

are mostly from the “Instrumental Pieces Played with the Ney” collection (43 recordings),4 and

3 http://compmusic.upf.edu/.
4http://neyzen.com/ney_den_saz_eserleri.htm
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Figure 2: Histograms of relative tempo τR in the dataset a) Peşrevs and saz semaisis b) Şarkıs

performed very similar to the score tempo and without phrase repetitions/omissions. From solo

stringed recordings to ensemble recordings the density of heterophony typically increases. All

audio recordings of vocal compositions are heterophonic. Hence the dataset represents both the

monophonic and the heterophonic expressions in makam music. The ahenk (transposition) varies

from recording to recording, which means that the tonic frequency (karar) varies even between

interpretations of the same composition. Some of the recordings include material that is not related

to any section in the score, such as taksims (non-metered improvisations), applauses, introductory

speeches, silence and even other pieces of music. The number of segments labelled as “unrelated”

is 220.5

We computed the distribution of the relative tempo, which was obtained by dividing the du-

rations of sections in a score by the duration of its occurance in a perfromance. Figure 2 shows

all the occured quotients for the annotated sections in the audio recordings in the dataset. The

outliers seen in Figure 2a are typically related to performances which omit part of a section, and

4th hanes, which tend to deviate strongly from the annotated tempo. As can be seen from Figure 2,

the tempo deviations are roughly Gaussian distributed, with a range of quotients [0.5 1.5] covering

almost all observations. This will help us to reduce the search space of our algorithm in Section 7.

5. Problem Definition and Methodology

We define section linking as “marking the time intervals in the audio recording at which musi-

cally relevant structural elements (sections) given in the score are performed.” In this task, we start

with a score and an audio recording of a music piece. The score and audio recording are known to

be related with the same work (composition) via available metadata, i.e. they are already linked

with each other in the document-level.

The score includes the notes, and it is divided into sections, some of which are repeated. These

sections are known, and the start and end of each section are provided in the score, including the

5The score data, annotations and results are available in http://compmusic.upf.edu/node/171.
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compositional repetitions. Therefore, we do not need any structural analysis to find the structural

elements. From the start and end of each section, the sequence of the sections are known. The

tempo and the makam of the piece are also available in the score. The audio recording follows

the section sequence given in the score with possible section insertions, omissions, repetitions and

substitutions. Moreover the performance might include various expressive decisions such as musical

material that are not related to the piece, phrase repetitions/omissions, pitch deviations.

A formal definition of the problem follows:

1. Let S = {Ss, u} denote the set of section symbols. It consists of a set of symbols Ss =

{s1, . . . , sN}, which represents all the N possible distinct sections in a composition; and an

unrelated section, u, i.e. a segment with content not related to any structural element of the

musical form. The number of unique sections is |S| = N + 1.

2. The sections in the score form the score section symbol sequence, σ = [σ1, . . . , σM ], where

σm ∈ Ss and m ∈ [1 : M ], with M being the number of sections in a score, repeated sections

are counted individually.

3. We define the score section sequence σ̄ = [σ̄1, . . . , σ̄M ], with each σ̄m consisting of a section

symbol, σm, and a sequence of 〈note-name, duration〉 tuples, which represents the monophonic

melody of the section. The 〈note-name, duration〉 tuples of the repetitive sections do not have

to be identical due to different ending measures, volta brackets etc.

4. For each performance we have the (true) audio section symbol sequence, ζ = [ζ1, . . . , ζK ],

where ζk ∈ S, k ∈ [1 : K], with K being the number of sections in the performance, including

possibly multiple unrelated sections.

5. Analogous, for each performance we have the (true) audio section sequence, ζ̄ = [ζ̄1, . . . , ζ̄K ],

k ∈ [1 : K]. Each element of the sequence, ζ̄k, has the section symbol, ζk, and covers a

time interval in the audio, t(ζ̄k), i.e. ζ̄k =
〈
ζk, t(ζ̄k)

〉
. The time interval is given as t(ζ̄k) =[

tini(ζ̄k) tend(ζ̄k)
]
, where tini(ζ̄1) = 0 sec; tend(ζ̄k) = tini(ζ̄k+1), k ∈ [1 : K − 1]; and tend(ζ̄K)

refers to the end of the audio recording.

6. We will apply our method to obtain the (estimated) audio section sequence π̄ in the audio

recording, where each section link, π̄k = 〈πk, t(π̄k)〉, in the sequence is paired with a section

symbol in the composition sn ∈ Ss or the unrelated section u. Ideally, the audio section

sequence, ζ̄, and section link sequence, π̄ should be identical.

Given the score representation of a composition and the audio recording of the performance of

the same composition, the procedure to link the sections of a score with the corresponding sections

in the audio recording is as follows:

1. Features are computed from the audio recording and the musically relevant sections (∀sn ∈
Ss) of the score (Section 6).
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2. A similarity matrix B(sn) is computed for each section sn, measuring the similarity between

the score features of the particular section and the audio features of the whole recording. By

applying Hough transform to the similarity matrices, candidate links π̄k, where πk = sn ∈ Ss,
are estimated in the audio recording for each section given in the score (Section 7).

3. Treating the candidate links as labeled vertices, a directed acyclic graph (DAG) is generated.

Using section sequence information (σ̄) given in the score, all possible paths in the DAG

are searched and the most-likely candidates are identified. Then, the non-estimated time

intervals are guessed. The final links are marked as section links (Section 8).

From music-theory knowledge, we generate a dictionary consisting 〈makam, karar〉 pairs, which

stores the karar of each makam (e.g. if the makam of the piece is Hicaz, the karar is A4.). The

karar note is used as the reference symbol during the generation of score features for each section

(Section 6.1). We also apply the theoretical intervals for a makam as defined in AEU theory to

generate the score features from the machine-readable score (Section 6.1). By incorporating makam

music knowledge, and considering culture-specific aspects of the makam music practice (such as

pitch deviations and heterophony), we specialize the section linking methodology to makam music

of Turkey.
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6. Feature Extraction

Score and audio recording are different ways to represent music. Figure 4a-b shows the score

and an audio waveform6 of the first nakarat section of the composition, Gel Güzelim7. To compare

these information sources, we extract features that capture the melodic content given in each

representation. In our methodology, we utilize two types of features: chroma (Gómez, 2006;

Müller, 2007) and prominent pitch. Chroma features are the state of the art features used in

structure analysis of Eurogenetic musics (Paulus et al., 2010) and also in relevant tasks such as

version identification (Serrà et al., 2009) and audio-score alignment (Thomas et al., 2012). We

use Harmonic Pitch Class Profiles (HPCPs), which were shown to be robust feature for tonal

musics (Gómez, 2006). On the other hand, prominent pitch might be a more accurate feature due

to the monophonic nature of melodies given in the score and the heterophonic performance practice

(Section 3). In the preliminary experiments (Şentürk et al., 2012), we used YIN (De Cheveigné

and Kawahara, 2002) and found that monophonic pitch extractors are not able to provide reliable

pitch estimations due to the heterophonic and expressive characteristics of MMT. Instead we use

the melody extraction algorithm proposed by Salamon and Gómez (2012), which was shown to

outperform other state of the art melody extraction algorithms.

We compare prominent pitches and HPCPs as input features for a section linking operation.

There are some differences in the methodology using prominent pitches or HPCPs in the feature

computation, which will be described in detail now.

6.1. Score Feature Extraction

To compute the score features, we use a machine readable score, which stores the value and

the duration (i.e. the 〈note-name, duration〉 tuple) of each note. The format of the score is chosen

either as a MIDI or a text file according to the feature to be computed (HPCPs or prominent

pitches, respectively). Both the symbolic representations contain information about the structure

of the composition, i.e. the score section sequence σ̄, as well. In the text-scores, the indices of

the initial and final note are given for each section. In the MIDI-scores, the initial and final time-

stamps (in seconds) are given for each section. The note values in the MIDI files also include the

microtonal information (see Section 4).

To compute the synthetic prominent pitches per section from the text-score, we select the

first occurrence of the section sn ∈ Ss, in the score section symbol sequence σ and extract the

corresponding 〈note-name, duration〉 tuple sequence from σ̄. The sum of the durations in the tuples

is assigned to the duration of the score section d(sn). Then we note the makam of the composition,

which is given in the score, and obtain the karar-name of the piece by checking the makam in the

〈makam, karar〉 dictionary. The note-names are mapped to the Hc distances according to AEU

6MBID: e7be8c2a-3309-4106-93b7-76cd6102a924
7MBID: 9aaf5c0b-4642-40fd-97ba-c861265872ce
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Figure 4: Score and audio representations of the first nakarat section of Gel Güzelim and the features computed
from these representations. a) Score. b) Annotated section in the audio recording. c) Synthetic prominent pitch
computed from the note symbols and durations. d) Prominent pitch computed from the audio recording. The end
of the prominent pitch has a considerable number of octave errors. e) HPCPs computed from the synthesized MIDI.
f) HPCPs computed from the audio recording.

theory with reference to the karar note. As an example see Figure 4b: here the karar note is G4

(Nihavent makam) and all the notes take on values in relation to that karar, as for instance 13 Hc

for the B4[. In makam music practice, the notes preceding rests may be sustained for the duration

of the rest.8 For this reason, the rests in the score are ignored and their duration is added to the

previous note. Finally, a synthetic prominent pitch for each section, p(sn), sn ∈ Ss, is calculated

at a frame rate of ∼46 ms, which provides sufficient time resolution to track all changes in pitch

in the scores.

To obtain the HPCPs, MIDI-scores are used. First, audio is generated from the MIDI-score.9

Then, the HPCPs are computed for each section10 (Figure 4e). We use the default parameters

given in (Gómez, 2006). The hop size and the frame size are chosen to be 2048 (e.g. ∼21.5 frames

per second) and 4096 samples respectively. The first bin of the HPCPs is assigned to the karar note.

For comparison, HPCPs are computed with different number of bins per octave in our experiments

(see Section 9). Finally, the HPCP vectors for each section, h(sn), sn ∈ Ss, are extracted by

using the start and end time-stamps of each section. Note that the HPCPs contain microtonal

information as well, since this information is encoded into the MIDI-scores.

8Notice that there are two rests in the score in Figure 4a, but the notes are sustained in the performance as seen
in the audio waveform in Figure 4b.

9We use TiMidity++ (http://timidity.sourceforge.net/) with the default parameters for the audio synthesis.
Since there are no standard soundfonts of makam music instruments, we select the default soundfont (grand acous-
tic piano: http://freepats.zenvoid.org/sf2/). Nevertheless the soundfont selection does not affect the HPCP
computation greatly since HPCPs were reported to be robust to changes in timbre (Gómez, 2006).

10We use Essentia in the computation (Bogdanov et al., 2013).

11
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6.2. Audio Feature Extraction

To obtain the prominent pitch from the audio files, we apply the melody extraction algorithm

by Salamon and Gómez (2012) using the default values.11 The approach computes the melody

after separating salient melody candidates from non-salient ones. If there are no salient candidates

present for a given interval, that interval is deemed to be unvoiced. However, as MMT is hetero-

phonic (Section 3), unvoiced intervals are very rare. The algorithm using the default parameters

treats a substantial amount of melody candidates as non-salient (due to the embellishments and

wide dynamic range), and dismisses a significant portion of melodies as unvoiced. Hence, we include

all the non-salient candidates to guess prominent pitches. In our experiments, melody extraction

is performed using various pitch resolutions (Section 9).

The next step is to convert the obtained frequency values of the melody in Hz to distances

in Hc with reference to the karar note. We first identify the frequency of the karar using Makam

Toolbox (Gedik and Bozkurt, 2010), using our extracted melodies as input. The pitch resolution of

the extracted melody used for karar identification is chosen as 0.44 Hc. The values in Hz are then

converted to Hc using the karar frequency as the reference (zero) so that the computed prominent

pitches are ahenk (i.e. transposition) independent. Finally, we obtain the audio prominent pitch

p(a), by downsampling the sequence from the default frame rate of ∼344.5 frames per second (hop

size of 128 samples) to ∼21.5 frames per second or a period of ∼46 ms (Figure 4d).

The procedure of HPCP computation from the audio recording h(a), is the same as explained

in Section 6.1 except that the first bin of the HPCP is assigned to the karar frequency estimated

by Makam Toolbox (Figure 4f).

7. Candidate Estimation

To compare the audio recording with each section in the score, we compute a distance matrix

between the score feature, p(sn) or h(sn), of each section sn and the audio feature, p(a) or h(a),

of the whole recording, for either prominent pitches or HPCP, respectively. Next, the distance

matrices are converted to binary similarity matrices (Section 7.1). Applying Hough transform to

the similarity matrices, we estimate candidate time intervals in audio for each section given in the

score (Section 7.2). In the remainder of the section, we use an audio recording12 of the composition

Şedaraban Sazsemaisi13 for illustration.

7.1. Similarity Matrix Computation

If the prominent pitches are chosen as features, the distance matrix, Dp(sn), between the audio

prominent pitch, p(a), and the synthetic prominent pitch, p(sn), of a particular section, sn ∈ Ss, is

11We use the Essentia implementation of the algorithm (Bogdanov et al., 2013).
12MBID: efae832f-1b2c-4e3f-b7e6-62e08353b9b4
13MBID: 1eb2ca1e-249b-424c-9ff5-0e1561590257

12
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obtained by computing the pairwise Hc distance between each point of the features, i.e. city block

(L1) distance (Krause, 1987), as:

Dp
ij(sn) = |pi(sn)− pj(a)| , 1 ≤ i ≤ q and 1 ≤ j ≤ r (1)

where pi(sn) is the ith point of the synthetic prominent pitch (of length q) of a particular section,

and pj(a) is the jth point of the prominent pitch (of length r) extracted from the audio recording.

City block distance gives us a musically relevant basis for comparison by computing how far two

pitch values are apart from each othqer in Hc.

The melody extraction algorithm by Salamon and Gómez (2012) is optimized for music that

has a clear separation between melody and accompaniment. Since performances of makam music

(esp. instrumental) involve musicians playing the same melody in different octaves (Section 3),

melody extraction algorithm by Salamon and Gómez (2012) produces a considerable number of

octave jumps (Figure 4d). Therefore, the value of each point in the distance matrices, Dp
ij , are

octave wrapped such that the distances lie between 0 and 53
2 Hc, with 0 denoting exactly the same

pitch class (Figure 5a).

If the HPCPs are chosen as the feature, the distance matrix, Dh(sn), between the HPCP

features h(a) computed from the audio recording, and the HPCP h(sn), computed for a particular

section sn ∈ Ss, is obtained by taking cosine distance between each frame. Cosine distance is a

common feature used for comparing chroma features (Paulus et al., 2010), computed as:

Dh
ij(sn) = 1−

∑nbins
b=1 hib(sn) hjb(a)√(∑nbins

b=1 h2ib(sn)
)
.
(∑nbins

b=1 h2jb(a)
) , 1 ≤ i ≤ ms and 1 ≤ j ≤ ma (2)

where hib(sn) is the bth bin of the ith frame of the HPCPs (of ms frames) of a given section, hjb(a)

is the bth bin of the jth frame of the HPCPs (of ma frames) extracted from the audio recording

and nbins denotes the number of bins chosen for the HPCP computation. The outcome is bounded

to the interval [0 1] for non-negative inputs, 0 denoting the “closest,” which makes it possible to

compare the relative distance between the frames of HPCPs that have unitless values.

In the distance matrices, there are diagonal line segments, which hint the locations of the

sections in the audio (Figure 5a). However, the values of the points forming the line segments may

be substantially greater than zero in practice, making it harder to distinguish the line segments from

the background. Therefore, we apply binary thresholding to the distance matrices to emphasize

the diagonal line segments, and obtain a binary similarity matrix B(sn) as:

Bij(sn) =

{
1, Dij < β

0, Dij ≥ β
(3)

where β is the binarization threshold. The binary similarity matrix B(sn) of a section sn shows

which points between the score feature and the audio feature are similar enough to each other to

13
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Figure 5: Candidate estimation between the teslim section of the Şedaraban Sazsemaisi and an audio recording of the
composition shown step by step. a) Annotated teslims and the distance matrix computed from the prominent pitches.
White indicates the closest distance (0 Hc). b) Image binarization on distance matrix. White and black represent
zero (dissimilar) and one (similar) respectively. c) Line detection using Hough transformation. d) Elimination of
duplicates. e) Teslim candidates. The numerical values “w” and “τR” indicate the weight and the relative tempo of
the candidate respectively.

be deemed as the same note (Figure 5b). For comparison, experiments will be conducted using

different binarization threshold values (Section 9).

7.2. Line Detection

After binarization, we apply Hough transform to detect the diagonal line segments (Duda and

Hart, 1972). Hough transform is a common line detection algorithm, which has been also used

in musical tasks such as locating the formant trajectories of drum beats (Townsend and Sandler,

1993) and detecting repetitive structures in an audio recording for thumbnailing (Aucouturier and

Sandler, 2002). The projection of a line segment found by the Hough transform to the time-axis

would give an estimated the time-interval t(π̄k) of the candidate section link π̄k.

The angle of a diagonal line segment is related to the tempo of the performed section τ(π̄k)

and the tempo of the respective section given in the score τ(sn), πk = sn. We define the relative

tempo for each candidate τR(π̄k) as:

τR(π̄k) = tan(θ) =
d(sn)

|t(π̄k)|
≈ τ(π̄k)

τ(sn)
, πk = sn (4)

where d(sn) is the duration of the section given in the score, |t(π̄k)| is the duration of the candidate

section link π̄k and θ is the angle of the line segment associated with the candidate section link.

Provided that there are no phrase repetitions, omissions or substantial tempo changes inside the

performed section, relative tempo approximately indicates the amount of deviation from the tempo

14



given in the score. If the tempo of the performance is exactly the same with the tempo, the angle

of the diagonal line segment is 45◦.

In order to restrict the angles searched in the Hough transform to an interval [θmin, θmax], we

computed the relative tempo of all the true section links τR(ζ̄k) in the dataset (see Section 4). We

constrain the relative tempo τR(π̄k) of a section candidate between 0.5 and 1.5, covering most of

the observed tempo distribution. This limits the searched angles in the Hough transform between:

[θmin, θmax] =

{
θmin = arctan(0.5) ≈ 27◦

θmax = arctan(1.5) ≈ 56◦
(5)

The step size of the angles between θmin and θmax is set to 1 degree.

Since some of the sections (such as teslims and nakarats) are repeated throughout the com-

position (Section 3) and sections may be repeated twice in succession (Section 4), a particular

section may be performed at most 8 times throughout a piece. Considering the maximum number

of repetitions plus a tolerance of 50%, we pick the highest 12 points in the Hough transform, which

show the angle and the distance to the origin of the most prominent line segments. Next, the

line segments are computed from this set of points such that the line segment covers the entire

duration of the section given in the score (Figure 5c). The number of non-zero pixels forming

the line segment is normalized by the length of the line segment, giving the weight w(π̄k) of the

segment.

Finally, if two or more line segments have their borders in the same vicinity (±6 seconds), they

are treated as duplicates. This occurs frequently because the line segments in the binary matrix are

actually blobs. Hence, there might be line segments with slightly different parameters, effectively

estimating the same candidate. Among the duplicates, only the one with the highest weight is kept

(Figure 5d). The regions covered by the remaining lines are chosen as the candidate time intervals,

t(π̄k) = [tini(π̄k) tend(π̄k)] in seconds, for the particular section (Figure 5e).

This operation is done for each section, sn ∈ Ss, obtaining candidate section links π̄k, πk =

sn ∈ Ss (Figure 6b).

8. Sequential Linking

By inspecting Figures 6a and 6b, it can be seen that all ground truth annotations are among the

detected candidates, with problems in the alignment of 4th hane. However, as there are also many

false positives, we use knowledge about the structure of the composition to improve the candidate

selection. Considering the candidate links as vertices in a DAG, we first extract all possible paths

from the DAG according to the score section symbol sequence σ = [σ1, . . . , σM ] (Section 8.1). We

then decide the most likely paths (Section 8.2). Finally, we attempt to guess non-estimated time

intervals in the audio (Section 8.3) and obtain the final section links.
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maisi. a) Annotated Sections, b) Candidate Estimation, c) The directed acyclic graph formed from the candidate
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8.1. Path Extraction

Each candidate section link, π̄k, may be interpreted as a labeled vertex, which has the following

labels:

• Section symbol, πk ∈ Ss

• Time interval t(π̄k) = [tini(π̄k) tend(π̄k)].

• Weight, w(π̄k), in the interval [0, 1] (see Section 7).

• Relative tempo, τR(π̄k), with its value restricted according to the duration constraint given

in Section 7, i.e. to the interval [0.55, 1.5].

If the final time of a vertex, tend(π̄j), is close enough to the initial time of another vertex,

tini(π̄k), i.e. |tend(π̄j) − tini(π̄k)| < α (α is chosen as 3 seconds), a directed edge ej→k = 〈π̄j , π̄k〉
from π̄j to π̄k is formed. The vertices and edges form a directed acyclic graph (DAG), G (Figure

6c).

We define a path pi as a sequence of vertices π̄i = [π̄i,1, π̄i,2, . . . , π̄i,k, . . . , π̄i,Ki ] ⊂ Π(G), where

Π(G) denotes the vertex set of the graph; and weighted edges ei = [ei,1, ei,2, . . . , ei,k, . . . , ei,Ki−1] ⊂
E(G), where ei,k represents the directed edge ei,k→i,(k+1) =

〈
π̄i,k, π̄i,(k+1)

〉
and E(G) denotes the

edge set of the graph. The length of the path is |pi| = |ei| = Ki − 1. We also obtain the section

symbol sequence πi = [πi,1, πi,2, . . . , πi,k, . . . , πi,Ki ], where k ∈ [1 : Ki] and πi,k ∈ Ss is the section

of the vertex, π̄i,k.

To track the section sequences in audio with reference to the score section symbol sequence σ,

we construct a variable-length Markov model (VLMM) (Bühlmann and Wyner, 1999). A VLMM

is an ensemble of Markov models from an order of 1 to a maximum order of Nmax. Given a section

symbol sequence πi, the transition probability bi,k−1 of the edge ei,(k−1) is computed as:

bi,k−1 = P
(
πi,k|πi,(k−1) . . . πi,(k−n)

)
, n = min (Nmax, k − 1) (6)

In our dataset, the sections are repeated at most twice in succession (Section 4). Hence, the

maximum order of the model Nmax is chosen as 3, which is necessary and sufficient to track the

position of the section sequence. VLMMs are trained from the score section symbol sequences,

σ, and audio section symbol sequences, ζ, of other audio recordings whose compositions are built

from a common symbol set Ss. If a composition is performed partially in an audio recording, the

recording is not used for training.

If a vertex π̄k has outgoing but no incoming edges, it is the starting vertex of a path. A vertex

π̄k is connectable to the a path pi (|pi| = Ki − 1), if the following conditions are satisfied:

i. A directed edge ei,Ki→k from π̄i,Ki to π̄k exists, i.e. |tend(π̄i,Ki)− tini(π̄k)| < α, α =

3 seconds.
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ii. The transition probability from π̄i,Ki to π̄k is greater than zero, i.e. P
(
πk|πi,Ki . . . πi,(Ki−n+1)

)
> 0, n = min (Nmax,Ki).

Starting from the vertices with no incoming edges, we iteratively build all paths in the graph

by applying the above rules. While traversing the vertices, an additional path is encountered, if:

• A vertex in the path is connectable to more than one vertex. There exists a path for each of

these connectable vertices. All these paths share the same starting vertex.

• The transition probability of an edge to the vertex π̄k is zero for the current path pi, i.e.

|tend(π̄i,Ki)− tini(π̄k)| < α, α = 3 seconds, and P
(
πk|πi,Ki . . . πi,(Ki−n+1)

)
= 0, n =

min (Nmax,Ki), but the transition probability is greater than zero for a VLMM with or-

der smaller than 0 < n′ < n. In this case, there exists a path that has π̄i,(Ki−n′+1) as the

starting vertex.

Traversing the vertices and edges, we obtain all possible paths P(G) = {p1, . . . , pi, . . . , pL} from

the candidate links, where L is the total number of paths (Figure 7a). The total weight of a path

pi is calculated by adding the weights of the vertices and the transition probabilities of the edges

forming the path:

w(pi) =

Ki∑
k=1

w(π̄i,k) +

Ki−1∑
k=1

bi,k (7)

In summary, each path pi has the following labels:

• A sequence of labeled vertices, π̄i ⊂ Π(G), |π̄i| = Ki.

• Directed, labeled edges connecting the vertices, ei ⊂ E(G), |ei| = Ki − 1.

• Section symbol sequence, πi = [πi,1, . . . , πi,Ki ].

• Time interval t(pi) = [tini(pi) tend(pi)], where tini(pi) = tini(π̄i,1) denotes the initial time and

tend(pi) = tend(π̄i,Ki) denotes the final time of the path.

• Total weight, w(pi).

8.2. Elimination of Improbable Candidates

Correct paths usually have a greater number of vertices (and edges) as depicted in Figure

7a. Moreover, the correct vertices typically have a higher weight than the others. Therefore, the

correct paths have a higher total weight than other paths within their duration. Assuming p∗ is

the path with the highest total weight, we remove all other vertices within the duration of the

path [tini(p
∗) tend(p∗)] (Algorithm 1, Figure 7b,d). Notice that p∗ can remove one or more vertices
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Figure 7: Graphical example for the sequential linking for the Şedaraban Sazsemaisi. a) All possible paths extracted
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Algorithm 1 Remove overlapping vertices

function remove overlap(Π(G), p∗)
Πchk ⇐ Π(G)− π̄∗;
for π̄k ∈ Πchk do

if [tini(p
∗) tend(p∗)] ∩ [tini(π̄k) tend(π̄k)] > 3 seconds then

Π(G)⇐ Π(G)− π̄k;
return Π(G)

from the “middle” of another path, which has a longer time duration than p∗; effectively removing

edges, splitting the path into two, and hence creating two separate paths.

After removing the vertices within the time interval covered by the path p∗, the related section

sequence π̄∗ (|π̄∗| = K∗) becomes unique within this time interval, and are therefore considered

final section links. The section symbol sequence of the path π∗ follows a score section symbol

subsequence σ∗ = [σj , . . . , σk] of the score section symbol sequence σ = [σ1, . . . , σj , . . . , σk, . . . , σM ],

1 ≤ j ≤ k ≤M . Next, we remove inconsequent vertices occurring before and after the audio section

sequence, pi with respect to σ∗ (see Algorithm 2).

We define two score section symbol subsequences σ− and σ+, which occur before and after σ∗,

respectively. Since the sections may be repeated twice in succession within a performance (Section

4), they depend on the first two section symbols, {π∗1, π∗2}, and the last two section symbols,

{π∗K∗−1, π∗K∗}, of the section symbol sequence π∗ of the path p∗:

σ− =


∅, π∗1 = π∗2 = σ1

[σ1, . . . , σj−1] , π∗1 = π∗2 6= σ1

[σ1, . . . , σj ] , π∗1 6= π∗2

, σ+ =


∅, π∗K∗−1 = π∗K∗ = σM

[σk+1, . . . , σM ] , π∗K∗−1 = π∗K∗ 6= σM

[σk, . . . , σM ] , π∗K∗−1 6= π∗K∗

(8)

Since sections given in the σ− and σ+ have to be played in the audio before and after π∗

respectively, we may remove all the vertices occurring before and after p∗, which do not follow

these score section symbol subsequences (Algorithm 2, Figure 7c).

Algorithm 2 Remove inconsequent vertices

function remove inconsequent(Π(G), p∗)
Πchk ⇐ Π(G)− π̄∗;
σ−,σ+ ⇐ get prevNext sectionSubsequences(π∗,σ∗) . Equation 8
for π̄k ∈ Πchk do

if tini(π̄k) < tini(p
∗) & πk /∈ σ− then

Π(G)⇐ Π(G)− π̄k;
else if tend(π̄k) > tend(p∗) & πk /∈ σ+ then

Π(G)⇐ Π(G)− π̄k;
return Π(G)
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Figure 8: Guessing non-estimated time intervals shown on an audio recording of Şedaraban Sazsemaisi a) Possible
paths computed with respect to the median of the relative tempos of all vertices. b) Final links

In order to obtain the optimal (estimated) audio section sequence π̄, we iterate through the

paths ordered by weight wi and remove improbable vertices according to this path by using Algo-

rithms 1 and 2. Note that the final sequence might be fragmented into several disconnected paths,

as shown e.g. in Figure 7d. The final step of our algorithm attempts to fill these gaps based solely

on information about the compositional structure.

8.3. Guessing non-linked time intervals

After we obtained a list of links based on audio and structural information, there might be

some time intervals where there are no sections linked (Figure 7d).

Assume that the time interval t∗ = [t∗ini t
∗
end] is not linked and it lies between two paths,

{p−, p+}, before and after the non-linked interval. Note that the path p− or p+ can be empty, if

the time interval is in the start or the end of the audio recordings, respectively. These paths would

follow the score section symbol subsequences σ− and σ+, respectively, and there will be a score

section symbol subsequence σ∗ = [σ∗1, . . . , σ
∗
M∗ ], lying between σ− and σ+. This score symbol

subsequence can be covered in the time interval t∗. Since the sections may be repeated twice in

succession within a performance (Section 4), the first and the last symbol of σ∗ depend on the last

two section symbols of π− and the first two section symbols of π+ (similar to Equation 8).

From the VLMMs, we compute all possible section symbol sequences,
{
π∗
1, . . . ,π

∗
R

}
, that obey

the subsequence σ∗, where R is the total number of computed sequences. From the possible section

symbol sequences, we generate each path P∗ = {p∗1, . . . , p∗r , . . . , p∗R}, r ∈ [1 : R]. The relative tempo

of each vertex in the possible paths is set to the median of the relative tempo of all previously linked

vertices, i.e. τR(π̄∗r,k) = median(τR(π̄k), ∀π̄k ∈ Π(G)), where π̄∗r,k ∈ π̄r (Figure 8a). Therefore the

duration of the vertices in the path becomes |t(π̄∗r,k)| = d(sn)/τR(π̄∗r,k),∀π̄∗r,k ∈ π̄r and π∗r,k = sn.

We then compare the duration of each path and the interval, |t∗ − t∗(p∗r)|. We pick p∗r , such

that r = arg min
r

(|t∗ − t∗(p∗r)|) with the constraint |t∗ − t∗(p∗r)| < 3 seconds. If no path is found,

the interval is labeled as “unrelated” to composition, i.e. πk = u (Figure 8b). Finally, all the links

π̄k are marked as section links.
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9. Experiments

We link the sections given in the score with segments in the audio recordings using the approach

described in Sections 6-8. The signal features are either chosen as HPCPs or prominent pitches

(Section 6). For comparison, the features are computed with 12, 24, 48 and 120 bins per octave

(4.42, 2.21, 1.10, 0.44 Hc resolution). The binarization threshold β range from 0.5 to 9 Hc (i.e.

a whole tone) for distance matrices calculated from prominent pitches, and from 0.20 to 0.50 for

distance matrices computed from HPCPs.

Besides section linking, we extract pitch features from annotated audio segments and link

them to the audio recording itself, i.e. “self-linking” the section annotations to the audio. This

operation represents an upper limit for the possible results achievable by section linking (Figure 9).

For repeated sections, the first annotation of any repeated section in the audio recording is selected

for self-linking. Self-linking should ideally be able to link all the sections in the audio recording

except the repeated sections with phrase omissions, repetitions and tempo changes.

We compare the initial and final times, tini and tend, of the section links after sequential linking

and self linking with the manually annotated time intervals separately. A link is marked as a true

positive, if an annotation in the audio recording and the link has the same section label, and the

link is aligned with the annotation, allowing a tolerance of ±3 seconds. All links that do not satisfy

these two conditions are considered as false positives. If a section annotation does not have any

links in the vicinity of ± 3 seconds, it is marked as false negative. If an unrelated link is aligned

with an unrelated annotation, allowing a tolerance of ±3 seconds, the unrelated link is a true

negative. From these quantities we compute specificity, recall, precision, and F1-scores as:

P =
tp

tp + fp
, R =

tp
tp + fn

, S =
tn

tn + fp
, F1 = 2

P R

P +R
(9)

tp, tn, fn, fp, P , R, S and F1 stand for number of true positives, number of true negatives, number

of false negatives, number of false positives, precision, recall, specificity and F1-score, respectively.

For all results below, the term “significant” has the following meaning: the claim is statistically

significant at the p = 0.01 level as determined by a multiple comparison test using the Tukey-

Kramer statistic.

9.1. Results

To find the optimal parameters for section linking, the experiments are done over a range of pitch

feature precisions and binarization thresholds (β) using annotated karars (Figure 9). The HPCPs

with 4.42 Hc pitch precision (12 bins per octave) perform better with a binarization threshold

at around 0.3. For pitch precisions higher than 4.42 Hc, the optimal results are obtained for

a binarization threshold between 0.30 and 0.45 (Figure 9a). Increasing the precision produces

slightly better but insignificant results (p = 0.85) for HPCPs. The optimal range of binarization

threshold for prominent pitch is observed between 1.5 and 4 Hc (Figure 9b). The F1-scores are
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Figure 9: F1 scores obtained for different pitch feature precision and binarization threshold. a) Sequential linking
results using HPCPs and annotated karars, b) Sequential linking results using prominent pitch and annotated karars

Table 1: Section linking results obtained for candidate estimation and sequential linking with annotated karar, and
for self-linking. Optimal parameters are used for computation. The results are given for the instrumental pieces and
the vocal pieces separately.

HPCPs Prominent pitch
Cand. Seq. Self Cand. Seq. Self
Est. Link Link Est. Link Link

Instr.

P% 28.9 89.8 97.2 32.9 92.6 96.5
R% 88.5 86.3 96.8 93.7 91.6 96.6
S% 0 46.8 77.7 0 55.3 73.2
F1% 43.6 88.1 97.0 48.7 92.1 96.6

Vocal

P% 43.2 92.3 97.5 54.1 96.9 96.4
R% 85.0 87.1 97.3 95.6 97.0 96.6
S% 0 39.5 69.2 0 64.3 58.9
F1% 57.3 89.6 97.4 69.2 96.9 96.5

similar for HPCPs (88.3%) and prominent pitch (90.2%) with semi tone (4.42 Hc) pitch precision

and optimal binarization thresholds at this precision (β = 0.3 for HPCPs and β = 2.5 Hc for

prominent pitches). Since increasing the pitch precision more than quarter tone (< 2.21 Hc) does

not have any significant effect, we select 2.21 Hc pitch precision as the optimal pitch precision. In

the remainder of this section, we are reporting the detailed results using the optimal parameters

(2.21 Hc pitch precision for both features; β = 0.35 for HPCPs and β = 2.5 Hc for prominent

pitches), unless stated otherwise. The optimal parameters will be further discussed in Section 10.

The F1-score obtained from the entire dataset using the optimal parameters and annotated

karar is 88.5% (vs. 97.1% from self-linking) for HPCPs and 93.6% (vs. 96.5% from self-linking)

for prominent pitch, with the differences between the features being statistically significant. The

average distance between each boundary of a true positive and the corresponding annotation is 0.36

and 0.44 seconds with a standard deviation of 0.41 and 0.49 seconds for links found from HPCPs

and prominent pitches using optimal parameters, respectively. There is no significant change in

F1-scores with respect to the instrumentation of the instrumental pieces or voicing of the vocal

pieces.

Table 1 gives the results for instrumental pieces and vocal pieces, using the annotated karar

23



with optimal parameters. Apart from the results for the complete algorithm (Seq. Link), and

the self-linking (Self Link), we also report the results obtained from the candidate estimation

(Cand. Est.), i.e. without applying any candidate selection. While the precision rate is low for

candidate estimation, sequential linking greatly increases the precision rate by effectively removing

improbable candidates. In the meantime, the recall rate slightly drops for instrumental pieces, and

a considerable number of non-linked intervals (44 tp for HPCPs and 20 tp for prominent pitches)

are guessed correctly for vocal compositions, effectively increasing the recall rate. The specificity

of candidate estimation is always 0, since unrelated time-intervals are marked in sequential linking

(Section 8.3). Moreover, 155 (45.2% specificity) and 167 (57.0% specificity) unrelated annotations

(out of 220 unrelated annotations) are correctly marked after guessing un-linked time intervals,

using HPCPs and prominent pitches, respectively. While there is no significant difference between

self-linking results for HPCPs and prominent pitches (97.1% F1-score for HPCPs and 96.5% F1-

score for prominent pitches using optimal parameters), prominent pitches significantly outperform

HPCPs in recall, precision and F1-scores in both candidate estimation and sequential linking.

Using the prominent pitch with optimal parameters and annotated karar, most of the errors

are due to structural changes within sections in a performance (29 out of 129 false positives and

39 out of 146 false negatives in the whole dataset) and substantial tempo changes within the

sections (23 out of 129 false positives and 30 out of 146 false negatives in the whole dataset) that

Hough transform cannot handle. Most of these errors in the dataset arise from the 4th hane of the

instrumental compositions, with 42 out of 129 false positives and 56 out of 146 false negatives in the

instrumental compositions being related to the 4th hane. Hough transformation is not able to find

the lines associated with 21 (out of 53 annotations) of the 4th hane annotations, due to their tempo

deviating more than the allowed ratio with respect to the tempos given in the score. Remaining

4th hane annotations errors are due to omissions, repetitions and tempo changes observed in the

performances. One audio recording is too slow 14 and two are too fast15 such that the relative

tempo of the sections are beyond the allowed interval. In these recordings Hough transform fails

to detect the appropriate lines (2 true positives out of 24 section annotations, 14 false positives

and 20 false negatives).

The results of section linking using automatic karar identification using optimal parameters

are reported in Table 2. Compared to section linking using annotated karar (Table 1), there is

a considerable drop in all of the recall, precision, and hence F1-scores. This decrease is due to

karar identification, which fails (i.e. the octave-wrapped distance between the annotated karar

and identified karar are more than 2.5 Hc, i.e. the optimal binarization threshold) for 62 pieces

(53 instrumental pieces and 9 şarkıs) out of 257 recordings (24.1% error). The karar identification

typically fails in pieces with more complex makams such as Ferahfeza (10 out of 10 recordings),

14MBID: 812828e6-3cb6-49c5-93fe-bf649c3096ae
15MBIDs: 031a6e72-903a-479a-9a4c-e2a3335e4a0a, 35d127d1-39e1-49d9-ab81-f8180b32590c
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Table 2: Results obtained from automatic karar identification using optimal parameters for the instrumental pieces
and the vocal pieces. The results are given for the instrumental pieces and the vocal pieces separately.

HPCPs Prominent pitch
Cand. Seq. Cand. Seq.
Est. Link Est. Link

Instr.

P% 21.5 76.3 23.3 77.9
R% 68.1 65.9 72.3 69.8
S% 0 25.0 0 27.0
F1% 32.7 70.7 35.2 73.6

Vocal

P% 35.3 84.5 45.4 87.9
R% 74.2 75.4 85.6 84.4
S% 0 23.0 0 31.4
F1% 47.9 79.7 59.3 86.1

Hicazkar (8 out of 9 recordings), Kürdilihicazkar (9 out of 19 recordings), Hüzzam (5 out of 8

recordings), Segah (7 out of 14 recordings) and Acemaşiran (3 out of 7 recordings). For those

makams, often more emphasis is put on notes different from the karar, which usually leads to

the assignment of the karar to one of these notes. The F1-score obtained from the entire dataset

using the optimal parameters and automatic karar identification is 73.5% for HPCPs and 77.5%

for prominent pitch.

We also computed the elapsed time for section linking excluding feature computation and karar

identification. On average, our implementation in MATLAB takes 3% of the duration of the audio

recording (with a standard deviation of 1%) to link the sections of the particular audio recording

with a 64 bit Ubuntu machine with 13.5 GB RAM and 3.33 GHz processor.

10. Discussion

The results show that our method is effective in linking sections given in the score to their

corresponding time intervals in audio recordings, given a wide variety of instrumental and vocal

timbres. The method is able to achieve good results by using different pitch features with fast

computation time and accurate link boundaries.

To find optimal parameters for binarization threshold and pitch precision, we examined the

results of section linking using different binarization threshold and pitch precision (Section 9.1).

The optimal range for binarization threshold for prominent pitch is between 1.5 and 4 Hc. Other

than for HPCP, the threshold range of prominent pitch has a musical interpretation since the

performed notes might deviate from the theoretical frequency of a note by as much as a semi-tone,

as explained in Section 3. This makes prominent pitches more intuitive to apply to MMT, and

possibly to other musics with a clear emphasis on melody.

For both HPCPs and prominent pitches, semitone pitch precision (4.42 Hc) performs worse than

higher pitch precisions. This shows that pitch precisions higher than semitone are necessary to

capture the melodic characteristics of makam music of Turkey. Nevertheless, increasing the pitch
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precision more than quarter tone (< 2.21 Hc) does not lead to further increase in the f1-score.

Therefore, both precision and binarization threshold lie in the vicinity of 2 Hc. While deviations

between theory and practice were observed in single cases to reach a semi-tone, the usual deviation

can be assumed to lie close to that value of 2 Hc. This proves the necessity of resolutions higher

than the semi-tone resolution when attempting even such a high level task as we do in this paper.

Even though increasing the pitch precision beyond 2.21 Hc (24 bins per octave) does not change

the F1-score practically, the default pitch precision can be increased further to use the same pitch

tracks for more precision-demanding tasks such as karar identification, audio-score alignment or

intonation analysis.

When comparing the results obtained from self-linking and sequential linking using prominent

pitch and annotated karar (Table 1), it is evident that the method is able to achieve practically the

maximum possible F1-score for vocal pieces (96.9% vs. 96.5% from self linking16) and a very high

F1-score for instrumental pieces (92.1% vs. 96.6% from self linking). The drop in the F1-score for

the instrumental pieces is mostly due to the errors related to specific performance characteristics

(internal repetitions, omissions and tempo changes) which Hough transformation cannot handle

effectively. Moreover, most of these errors are related to the 4th hanes. In fact, resolving all the

errors related to 4th hanes would increase the F1-score to approximately 95.7% (vs. 96.6% from

self linking). In the saz semaisi form, dividing the 4th hane further into its substructures (Section

3) might help to handle these problems. More generally, such performance features could be better

handled by aligning audio and the score at the note level.

Statistical significance tests show that our feature and similarity matrix computation is resilient

to changes in timbre and density of heterophony. Moreover, recall rates obtained in candidate

estimation step (Table 1) show that Hough transform is able to give reliable estimations for section

links. It only fails in three audio recordings (out of 257) in which the performance is beyond

the allowed tempo ratios. To remove the angle constraints from the line detection step, we need

to estimate an average tempo of performance. Increasing the range of searched angles in Hough

transform and then deducing the average tempo ratio of the performance from candidates with

high weights might be sufficient for tempo estimation.

Comparing the recall rates of candidate estimation and sequential linking in Table 1, it can

be seen that guessing non-linked intervals improves the section linking in vocal pieces. However

it does not make any improvement in instrumental pieces, mostly due to the non-linearities in

the performances of 4th hanes. Guessing non-linked intervals is dependent on the median of the

relative tempo of the performed sections (see Section 8.3). In the case, where the 4th hane does not

follow the tempo indicated in the score or there are structural deviations inside the performance of

the section, the duration of the guessed paths do not match the duration of the non-linked audio

16In both cases the number of true positives are the same (616 true positives), however section linking using
annotated karar produces slightly less errors than self linking (20 vs. 23 false positives and 19 vs. 22 false negatives).
This difference is insignificant.
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segment.

The self-linking results (Table 1) imply that both chroma features and prominent pitch can ide-

ally perform equally well. However, candidate estimation using HPCPs misses more true positives

than prominent pitch, and sequential linking is not able to reduce the gap between the F1-scores

(Tables 1 and 2). This indicates that the prominent pitch is a more adequate representation, when

aiming at a comparison between score and audio in this musical context.

Our method can not search “unrelated” annotations directly and the errors within the time

interval can only be removed by Algorithm 2, for false positives that do not obey the section

sequences. Moreover the unrelated region can not be marked correctly if the time interval of an

unrelated region is estimated poorly due to a neighboring section with tempo changes, phrase

repetition/omissions. Detecting “non-musical” events such as applause and silence can help to

distinguish the unrelated regions and eliminate errors due to tempo changes typically occurring in

the end of the recordings.

The bottleneck of the system is the automatic karar identification. If the karar of the piece is

recognized incorrectly, no true lines will be present in the binarized similarity matrices obtained

from either of the two feature types. While the results with automatic karar identification using

Makam Toolbox are still good, the errors becomes a noticeable drawback especially for pieces

composed in complex makams. Nevertheless, by using the melodic information in the scores we

can greatly increase the accuracy of the karar identification accuracy. Recently, in Şentürk et al.

(2013), we extracted the stable pitches from the audio recording (i.e. the peaks of the pitch

distribution computed from the prominent melody) and attempted to link the repetitive section

in the score using the candidate estimation method explained in Section 7, assuming each stable

pitch as the karar. Using the same data collection explained in Section 4 we achieved an accuracy

of 99.6% (1 fail out of 257) effectively solving the karar identification problem for pieces with an

available score. The F1-scores obtained from section linking using repetitive section linking for

karar identification is 88.6% (vs. 88.5% using annotated karar) for HPCPs and 93.2%17 (vs. 93.6%

using annotated karar) for prominent pitch for the whole dataset.

11. Conclusion

We presented a novel methodology to link musically relevant sections in a score with correspond-

ing time intervals in an audio recording of the same piece. We tested our approach using HPCPs,

a pitch feature previously applied to music with strong emphasis on harmony, and prominent

17Using prominent pitch with optimal parameters, all of the sections are correctly linked (i.e. 100% recall) in
the audio recording with failed karar identification (MBID: f5a89c06-d9bc-4425-a8e6-0f44f7c108ef). In this recording
the distance between the estimated and actual karar is slightly higher than 2.5 Hc, i.e. the optimal binarization
threshold. Our section linking methodology is still able to link the sections even though the resultant weights are
low.
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pitches, a melodic pitch feature. We demonstrated that prominent pitches capture the hetero-

phonic characteristics of MMT better than HPCPs. Since scales in MMT need resolutions higher

than a semitone, we also tried section-linking over a range of pitch precisions and binarization

thresholds. It was observed that the pitch precision has to be higher than semitone to represent

the melodic granularity of MMT. Unlike HPCPs, the optimal range of binarization threshold for

prominent pitches was musically interpretable. Therefore using prominent pitches is more intuitive

for music, where there is a clear melody, and concepts like functional harmony do not exist. Our

results show the importance of culture-aware and knowledge-based systems. Nevertheless, we have

also achieved remarkable results using HPCPs. It may be argued that that the methodology can

be easily adapted to Eurogenetic musics, which can be typically conceptualized with the help of

harmony.

Our approach is fast and accurate in matching both the section labels and their correspond-

ing time intervals. Section links can be used as a complementary information in computational

tasks such as form analysis and audio score alignment. Moreover, the computational steps in our

approach can be modified to be used in similar research problems such as pattern matching and

version detection. In Şentürk et al. (2013), we used the candidate estimation methodology (Section

7) to identify the performed karar of the audio recording. Our results indicate that score informa-

tion greatly simplifies the karar identification task. Parallel to findings of Aucouturier and Sandler

(2002), the self-linking results (Figure 9c,f) imply that repetitive section linking can be effectively

used for audio thumbnailing.

Nevertheless, there is still room for improvement for a more reliable automatic system. As

a next step in this research we want to increase the granularity of the linking between audio

and score in order to provide more insights on the dynamics and the intonation of makam music

performances. This should solve section linking problems due to performance particularities such

as omissions, repetitions and tempo changes. We plan to use JumpDTW proposed by Fremerey

et al. (2010), which allows jumps between the measures indicated in the score. Since we know the

score section sequence, we can further modify JumpDTW to allow jumps between the sections and

between the measures within each section. Section linking prior to audio-score alignment might

increase the f1-score and reduce computational time.

Content-based creation, analysis and discovery of multimodal and inter-linked music collections

is becoming an active research area in the last few years, thanks to the advances in information

technology and the emergence of vast numbers of available multi-modal information sources such

as audio, MIDI, sheet music, video and editorial metadata (Cornelis et al., 2010; Thomas et al.,

2012). Under the CompMusic Project we are developing Dunya, a system to browse and interact

with music collections in a culturally informed way (Sordo et al., 2012; Porter et al., 2013). We

will integrate our section linking methodology to the system and use it as a culture-specific tool for

navigation and discovery of makam music of Turkey. We hope that our approach will contribute

to the information technologies aimed at preserving, discovering and appreciating musical cultures.
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Şentürk, S., Gulati, S., and Serra, X. (2013). Score informed tonic identification for makam music of Turkey. In

Proceedings of 14th International Society for Music Information Retrieval Conference (ISMIR), pages 175–180,

Curitiba, Brazil.
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