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ABSTRACT

Tonic is a fundamental concept in many music traditions
and its automatic identification should be relevant for es-
tablishing the reference pitch when we analyse the melodic
content of the music. In this paper, we present two metho-
dologies for the identification of the tonic in audio recor-
dings of makam music of Turkey, both taking advantage
of some score information. First, we compute a promi-
nent pitch and a audio kernel-density pitch class distribu-
tion (KPCD) from the audio recording. The peaks in the
KPCD are selected as tonic candidates. The first method
computes a score KPCD from the monophonic melody ex-
tracted from the score. Then, the audio KPCD is circular-
shifted with respect to each tonic candidate and compared
with the score KPCD. The best matching shift indicates the
estimated tonic. The second method extracts the mono-
phonic melody of the most repetitive section of the score.
Normalising the audio prominent pitch with respect to each
tonic candidate, the method attempts to link the repetitive
structural element given in the score with the respective
time-intervals in the audio recording. The result produ-
cing the most confident links marks the estimated tonic.
We have tested the methods on a dataset of makam music
of Turkey, achieving a very high accuracy (94.9%) with
the first method, and almost perfect identification (99.6%)
with the second method. We conclude that score informed
tonic identification can be a useful first step in the compu-
tational analysis (e.g. expressive analysis, intonation anal-
ysis, audio-score alignment) of music collections involving
melody-dominant content.

1. INTRODUCTION

Pitch relationships in pitch space and time constitute the
fundamental building block of musical melody. In many
musical styles, there is the concept of “tonic,” which acts
as the reference tuning pitch for the melody. The inter-
relations between the tonic and other pitches establish a
hierarchical organisation, which is highly related to the
perception, cognition and anticipation of music [9]. The
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automatic identification of the tonic of a piece is a musi-
cally relevant step in the computational analysis of many
melodic characteristics.

Nevertheless, the tonic concept encompasses different
meanings and characteristics within the cultural, musico-
logical, acoustic (and linguistic) context of different mu-
sic traditions. For example, in some music traditions, the
tonic of a performance is changed according to instrument
characteristics, personal preferences or for historical re-
levance. In such cases tonic identification is necessary
to establish the reference pitch to carry further computa-
tional tasks such as tuning analysis, intonation analysis
and melodic structure recognition. For systems that aim
to analyse the melodic content of such musics, knowledge-
based tonic identification approaches may be required [7,
14, 15].

Pitch distributions (PDs) and ”octave-wrapped” pitch
class distributions (PCDs) are commonly used for analy-
sis of tonic and pitch organisation. Krumhansl and She-
phard [11] used 12-dimensional PCDs to study the tonal
organisation of euro-genetic musics. PCDs are also used
for relevant tasks such as key detection and chord recogni-
tion [8, 16] for euro-genetic musics.

For musical styles involving microtonality, the pitch spa-
ce must be extended beyond 12-dimensions to model, ana-
lyze and predict the melodic properties of the studied mu-
sic [3, 4, 7]. Gedik and Bozkurt [7] propose a method for
tonic and makam recognition for makam music of Turkey
(MMT). The method generates a histogram based, fine-
grained pitch distribution (FPD) for the test audio, and for
each makam from the annotated audio recordings. Given
the makam of the test audio, the first bin in the template
FPD is assigned to an arbitrary frequency below audio FPD
such that the FPDs do not overlap initially. Then, the me-
thod compares the template FPD with the audio FPD by
shifting the template FPD at each step. In the best match-
ing shift, the frequency of the tonic of the template is la-
beled as the estimated tonic.

In [2], a joint tonic and raag (melodic structure) recog-
nition methodology was presented for North Indian classi-
cal music. Instead of generating a single template for each
raag, the method generates multiple PCDs for each raag
from the pitch tracks extracted from the annotated audio
excerpts. Given the raag of a musical excerpt, the PCD
computed from the excerpt is compared with each of the
template PCDs of the same raag by circularly shifting the
test PCD. The shift in the closest match indicates the tonic.



The disadvantage of using audio recordings for tem-
plate computation is the necessity of adequate amount of
training data. Moreover, the quality of the data has to
be maintained so that the intervallic properties are repre-
sented well. Even so, a test distribution can substantially
differ from the corresponding template. A common con-
fusion is the estimation of another pitch (or pitch class)
when its occurrence is comparable to the occurrence of
the tonic. Moreover, in cases when an audio recording
includes unrelated musical content in addition to a per-
formed piece, e.g. improvisations or performances of other
pieces in different modal structures, the audio distribution
would be a mixture of the distributions of these distinct
musical events. This might cause substantial confusions.
This problem motivates the replacement of audio recor-
dings with a more “definitive” information source in the
template training step. If available, scores can be good
sources, since they provide an easily accessible symbolic
description of many relevant musical components.

When score information is available, utilising the se-
quential note information might bring a more effective so-
lution to tonic identification. In [4], we introduce a method
to link the musically relevant structural elements (sections)
given in the score and the corresponding time-intervals in a
audio recording. The method estimates all possible links in
an audio recording by applying Hough transform to simi-
larity matrices computed between the prominent pitch ext-
racted from the audio recording and the synthetic pitch
extracted from the score fragments. The estimated links
are searched according to the section sequence given in the
score to obtain the most-likely section links.

In this paper, we present two methodologies to identify
the tonic of a performed piece by comparing the melodic
contents extracted from the performance and the score of
the piece. We use makam music knowledge and the fin-
dings from previous research [2, 4, 7] to specialise both
the methodologies for the melodic aspects of makam mu-
sic of Turkey. Both methods extract prominent pitch from
the audio recording. Then a fine-grained, kernel-density
pitch class distribution (KPCD) is computed from the au-
dio prominent pitch, and tonic candidates are selected. A-
dapted from [2, 7], Method I applies circular shifting to
the audio KPCD according to tonic candidates. Each shift
is then compared with a score KPCD computed from the
monophonic melody in the score. Method II normalises
the prominent pitch with respect to each tonic candidate.
Next, it attempts to link melodic fragments in the score
with the respective time intervals in the audio by using the
candidate link estimation approach explained in [4]. As the
first experiments in “score-informed” tonic identification,
we consider inter-linked audio-score collections, where the
audio recording and the score are already known to be re-
lated with the same work (composition). We use musical
scores, which include the makam of the piece, the boun-
daries of the structural elements and the sequence of these
elements.

The remainder of the paper is as follows: Section 2
makes a brief introduction to makam music of Turkey. Sec-

tion 3 explains the proposed methodologies. Section 4
presents the data collection used in the experiments. Sec-
tion 5 explains the experiments done to test the methodolo-
gies and provides the results. Section 6 wraps up the paper
with a discussion and conclusion.

2. MAKAM MUSIC OF TURKEY

The melodic structure of most traditional music repertoires
of Turkey follows the concept of makams. Makams are
modal structures, where the melodies typically revolve a-
round a başlangıç (starting, initial) tone and a karar (en-
ding, final) tone [6]. Karar is synonymous to tonic. There
are a number of different transpositions (ahenk), any of
which might be favored over others due to instrument/vocal
range or aesthetic concerns [6]. The default ahenk is called
“bolahenk.” For an extended discussion of ahenks, the
readers are referred to [6, Appendix F].

Currently, Arel-Ezgi-Uzdilek (AEU) theory is the main-
stream theory for the makam music of Turkey (MMT) [6].
AEU theory argues that there are 24 equal intervals and a
whole tone is divided into 9 equidistant intervals. These
intervals can be approximated from 53-TET (tone equal
tempered) intervals, each of which is termed as a Holdrian
comma (1 Hc ≈ 22.6415 cents) [6]. On the other hand,
the intonation of some intervals in the performance might
differ from the theoretical intervals as much as a semi-
tone [6, 17]. 1

Since early 20th century, a score representation exten-
ding the Western music notation has been used in MMT
[12]. This notation typically follows the rules of AEU
theory. The scores tend to notate monophonic melodic
lines. However performances may differ from the score
substantially due to the heterophonic characteristics of ma-
kam music and artistic decisions such as non-notated em-
bellishment, note/ phrase insertion, repetitions and omis-
sions. The register information given in the notation is al-
ways relative to the instrument, i.e. the lowest tone of the
same pitch class that an instrument can produce is always
indicated with the same symbolic note in the score. In bo-
lahenk, the notes are written a perfect fourth higher than it
sounds, i.e. the rast note represented by the G4 in the staff
is played in the pitch class of approximately D4 = 293.66
Hz [6].

In the experiments, we focus on peşrev, saz semaisi (the
two most common instrumental forms) and şarkı (the most
common vocal form) forms from the classical reperoire.
Both peşrev and saz semaisi typically consist of a repetitive
section called teslim. In the şarkı form, there is typically a
repetitive section called nakarat.

3. PROPOSED APPROACHES

We define tonic identification as “estimating any frequency
belonging to the same pitch class of the karar note.” Even
though the octave information is important in makams, we

1 Throughout the text we will represent a note name as [note
letter][octave]{accidental}{Hc distance}, e.g. the note mahur is written as
G5[4. Note that the performed frequency might be different.



chose to generalize the term tonic to the pitch class of the
karar note due to some performance scenarios, where it is
ambiguous to define the octave of the performance tonic. 2

Given the problem definition, we propose two metho-
dologies to identify the tonic of a performance of MMT
using score information. In this paper, we focus on inter-
linked audio-score collections, where the scores and audio
recordings are already related with the respective compo-
sitions via available metadata. Both methodologies take
advantage of a machine readable score, which stores the
value and the duration (i.e. the 〈note-name, duration〉 tu-
ple) of each note. The tuple sequence form a symbolic
monophonic melody. Additionally, the score is divided
into sections, some of which are repeated. The makam and
the tempo of the piece are provided in the score. Therefore,
we do not need any structural analysis to find the repeti-
tive structural element. The audio recording might include
various expressive decisions such as musical materials that
are not related to the piece, phrase repetitions/omissions
and pitch deviations.

From music-theory [6], we compile a dictionary con-
sisting on 〈makam, karar〉 pairs, which stores the karar of
each makam (e.g. if the makam of the piece is Hicaz, the
karar is A4.). Karar note is used as the reference sym-
bol during the generation of synthetic pitch from the score
(Section 3.1.1). We also refer to theoretical intervals de-
fined in AEU theory to generate the score features from
the machine-readable score (Section 3.1.1).

Method I generates a synthetic pitch from the mono-
phonic melody given in the score and extracts a promi-
nent pitch from the audio recording (Section 3.1.1). Kernel
density estimation (KDE) is applied to these melodic fea-
tures and the 160-D kernel-density pitch class distributions
(KPCDs) are obtained (Section 3.1.2). The audio KPCD
is circularly shifted according to its peaks and compared
to the score KPCD. The candidate used to shift the au-
dio KPCD, which results in the minimum distance to score
KPCD, is selected as the tonic (Section 3.2).

Method II (Section 3.3) uses the note sequence infor-
mation given in the score. Similar to the first method, it
computes a prominent pitch and audio KPCD from the au-
dio recording. From the score, the second method only
extracts the synthetic pitch from the monophonic melody
of the repetitive structural element (e.g. teslim, nakarat)
indicated in the score. The method then normalizes the au-
dio prominent pitch with respect to each peak in the audio
KPCD. Then, it attempts to link the repetitive structural
element in the score with its respective locations in the au-
dio recording. The candidate of the section linking result,
which outputs the most confident links, is selected as the
tonic.

Before presenting the methodologies, we first explain
the feature extraction and tonic candidate selection steps,
which are shared by both the approaches.

2 As an example, consider an ensemble performance, where each in-
strument performs the same melodic contour in its own register.
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Figure 1. The first nakarat section of the composition, Gel
Güzelim. a) Score, b) Synthetic pitch computed from the
note symbols and durations.

3.1 Feature Extraction

Notation and audio recording are different representations
of music. To compare these information sources, we need
to extract features which adequately capture the musical
content given in each representation. In [4], we found that
prominent pitch is a highly effective and intuitive feature to
analyze MMT due to the monophonic nature of the scores
and the heterophonic practice. From the prominent pitch,
we further compute a fine-grained pitch class distribution.
FPCDs are shown to model the intervallic properties of the
makams adequately [7]. Moreover, FPCDs are able to cap-
ture the intonation information in a limited fashion, i.e. the
width and shape of the peaks.

3.1.1 Synthetic Pitch and Prominent Pitch Computation

For the computation of synthetic pitch from the score and
prominent pitch from the audio, we use the feature extrac-
tion step explained in [4]. Here we give a brief summary
of the process.

To compute the synthetic pitch ps for the desired score
fragment (i.e. the whole score in Method I and the repeti-
tive section in Method II), we extract the corresponding
〈note-name, duration〉 tuple sequence associated with the
fragment. Then, we pick the makam of the composition,
which is given in the score, and obtain the karar-name of
the piece by checking the makam in the 〈makam, karar〉
dictionary. The note names are mapped to the Hc dis-
tances according to AEU theory with reference to the karar
note. Finally, the synthetic pitch for the score fragment is
generated at a frame rate of ∼46 ms, which provides suffi-
cient time resolution to track all changes in pitch. Figure 1
shows the repetitive section given in the score of the com-
position, Gel Güzelim, 3 and the synthetic pitch computed
for this fragment.

To obtain the audio prominent pitch pa, we use the Es-
sentia implementation [1] of the melody extraction algo-
rithm proposed by [13]. The approach computes the main
melody after separating salient melody candidates from
non-salient ones. We include all the non-salient candidates
to guess the prominent pitch since non-melodic intervals
are very rare in MMT. Melody extraction is done using a
pitch precision of 7.5 cents (≈ 1

3 Hc), which is reported

3 http://tinyurl.com/lfp8x83



as a suitable pitch precision for MMT [7]. The hop size is
chosen equal to the frame rate of the ps (∼46 ms).

3.1.2 Pitch Distribution Computation and Tonic
Candidate Selection

A fine-grained pitch class distribution (FPCD) is computed
from the audio prominent pitch to find tonic candidates in
both methods. Method I also computes a score FPCD from
the synthetic pitch of the whole score and shift-compares
it with the audio FPCD. For the audio FPCD computation,
the unit of the prominent pitch is converted from Hz to Hc
with respect to the middle C (261.63 Hz). This reference
is selected as a dummy value for the unit conversion.

While shift-comparing FPCDs to every possible pitch
value is effective for template matching [7], in previous
research [2] we showed that picking the location of the
peaks in the PCD as tonic candidates greatly reduces the
computation time with minimal losses in tonic accuracy.
It was also observed that, kernel-density pitch class distri-
butions (KPCDs), which are computed using kernel den-
sity estimation (KDE), perform significantly better than
histogram-based pitch class distributions, when candidates
are selected as the peak locations [2]. Hence, we use kernel
density estimation (KDE) to compute the FPCDs. In KDE,
an observation contributes to neighbouring bins according
to a kernel. When the kernel is chosen as Gaussian, the
continuous kernel density f̂(x) is given by:

f̂(x) =
1

nh

n∑
j=1

1√
2π

e−
(x−p(j))2

2h2 (1)

where h is the kernel width, p(j) is the value of the jth

index of the prominent pitch p, and n is the total number
of the prominent pitch values.

We use the function ksdensity in MATLAB 4 to obtain a
discrete approximation of the kernel density. The discrete
approximation of kernel density provides smoothness over
histogram computation. KDE is especially helpful in score
FPCD computation (Section 3.2), since the pitch spread
provides robustness to the microtonal deviations in the tu-
ning and intonation. We empirically set the kernel width
h to 15 cents (≈ 2

3 Hc) so that an observation practically
contributes within an interval of 4Hc, slightly smaller than
a semitone. Finally, the estimated kernel density is octave
wrapped, and the KPCD is obtained. We can write a KPCD
with N bins as D = 〈d1, . . . , di, . . . , dN 〉, where di de-
notes the value of the pitch class index i. We retain the
pitch precision of the prominent pitch (7.5 cents), resul-
ting in N = 160 bins. In the audio KPCD (Da), the first
bin is initialised to the dummy value (261.63 Hz) used in
Hc conversion. In the score KPCD (Ds), the first bin indi-
cates the pitch class of the karar note, i.e. 53k Hc, where
k ∈ Z.

We select the index of all the peaks in Da as the tonic
candidates.

4 http://www.mathworks.com/help/stats/ksdensity.html

3.2 Method I: Distribution Matching

In the first method, we compute a score and an audio KPCD
from both score and audio recording, respectively. For
the score KPCD computation, the whole note sequence
is used. The locations of the peaks in the audio KPCD
(Da) are picked as the candidate tonics. Using the tem-
plate matching approach [2, 7] we apply circular-shift the
audio KPCD such that each candidate is carried to the first
bin. Circular-shift can be simply formulated as:

Di = 〈di, di+1..., dN , d1, ..., di−1〉 (2)

Next, the shifted audio KPCD Di
a is compared to Ds.

We use Bhattacharyya distance, which was shown to out-
perform common Ln distances (e.g. City Block, Euclide-
an) in PD comparison [2]. Bhattacharyya distance ∆ be-
tween the score KPCD and shifted audio KPCD can be
written as:

∆(Ds, D
i
a) = − ln

(
N∑

k=1

√
Ds(k)Di

a(k)

)
(3)

where k denotes an index of the Ds and Di
a, respectively.

Bhattacharyya distance is computed between the score
and each shifted audio KPCD. The index i which results in
the minimum distance, indicates the estimated pitch class.
The estimated tonic ci can be represented as:

ci = 261.63 k ∗ 2
7.5(i−1)

1200 , k ∈ Z (4)

3.3 Method II: Repetitive Section Linking

Using PCDs, we can only take an advantage of the inter-
val and some limited intonation information. Nevertheless,
scores also include note sequence information. In Method
II, we attempt to link a melodic fragment from the score
with the audio recording by using the candidate link esti-
mation presented in [4].

We first compute the audio prominent pitch pa. We also
compute audio KPCD and obtain the candidate tonics. U-
sing Equation 4 and setting k = 1, the candidate indices
are converted back to Hz, i.e. ci(k = 1), where i is the in-
dex of the tonic candidate. Next we convert the prominent
pitch values from Hz to Hc with respect to each karar can-
didate such that the karar candidate has a value of 0 Hc.
The normalised audio prominent pitch can be expressed
as:

pia = 53 ∗ log2

(
pa

ci(k = 1)

)
(5)

Next, synthetic pitch of the repetitive section indicated
in the score ps is extracted. We compute a similarity matrix
Si between ps and pia:

Si
jk =

{
1,

(
|ps(j)− pia(k) + α| mod 53

)
− α < β

0,
(
|ps(j)− pia(k) + α| mod 53

)
− α ≥ β (6)

where mod indicates the modulo operation. Each element
in the similarity matrix indicates whether two pitch values
can be deemed as the same pitch class within the binariza-
tion threshold β. α is a dummy value greater than β to



ensure pitch differences between [53k − β, 53k], k ∈ Z
are treated as similar. In [4], we found that 3 Hc is an
optimal value for β. In the similarity matrix Si, diago-
nal line segments are observed which indicate the possi-
ble performed locations of the repetitive section. We ap-
ply Hough transform to detect the diagonal line segments
[5]. We observe that the tempo of a performance typically
varies between between 0.55 and 1.5 times the tempo indi-
cated in the score [4], which we use to restrict the searched
angles between −28.81◦ and −56.31◦. We obtain a set
of links

{
li1, . . . , l

i
m

}
for each tonic candidate, where m

refers the number of links found using the tonic candidate.
The number of non-zero pixels forming the line segment
is normalised by the length of the line segment, giving the
weight w(lik), 1 ≤ k ≤ m, of the segment. We combine
the weight of each link and obtain a accumulated weight
for each tonic candidate. The accumulated weight is given
as:

wi = 3

√√√√ m∑
k=1

w(lik)3 (7)

Equation 7 ensures that (possibly erroneous) links with
low weights are greatly suppressed with respect to the links
with high weights. The tonic is estimated as the pitch class
ci, which has the highest accumulated weight wi.

4. DATA COLLECTION

For our experiments, we collected 116 audio recordings of
24 preşrevs, 84 audio recordings of 19 saz semaisis, and 57
audio recordings of 14 şarkıs (257 audio recordings of 57
compositions in total). The compositions are taken from
the classical repertoire, in which the makam and the karar
note are clearly defined in music theory. The makam of
each composition is included in the metadata. 5 The pieces
cover 28 different makams.

The scores are obtained from the symbTr database. The
symbTr-score is machine-readable text format, which stores
the value and the duration of the note sequences [10]. The
symbolic representation also contains information about
the structure of the composition, i.e. the section sequences
and the indices of the initial and final note of each section
are indicated.

The audio recordings are selected from the CompMusic
collection, and they are either in public-domain or com-
mercially available. Some recordings include musical e-
vents which do not belong to the composition such as im-
provisations and even performances of other compositions.

The ground truth is obtained by manually marking the
tonic frequency using Makam Toolbox [7]. Figure 2a and
Figure 2b shows the distribution of the annotated tonic with
respect to the pitch class C and the distribution of the trans-
positions with respect to bolahenk, respectively. It can be
seen that the annotated tonic are mostly distributed around
the semitones with microtonal deviances. Apart from bo-
lahenk, the tonic is mostly performed with a transposition

5 The metadata is stored in MusicBrainz: http://tinyurl.com/mfvop6l
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Figure 2. Distribution of the annotated tonics in the data
collection. a) Pitch class histogram of the annotated tonic
with respect to the pitch class C, b) Histogram of the trans-
positions with respect to bolahenk

around the perfect fourth, perfect fifth and minor seventh.
Nevertheless a considerable number of tonic annotations
reside in microtonal pitch classes.

5. EXPERIMENTS AND RESULTS

We use the methodologies explained in Section 3 to iden-
tify the tonic. We compare the estimated tonic from each
algorithm with the manually annotated tonic. If the dis-
tance between the estimated and the annotated tonic are
less than 1 Hc, the estimation is marked as correct. 6

Tonic identification by repetitive section linking fails
only in one piece (99.2% success rate). In this recording, 7

the vocalist sings a gazel (vocal improvisation) in almost
three fifth of the duration of the recording with skillful vi-
bratos extending up to ≈ 200 cents peak-to-peak. These
vibratos occasionally cross mahur (G5[4) and less frequ-
ently reach to gerdaniye (G5), which is in the pitch class
of the tonic. Throughout the piece the pitch class G[4 is
visited more than G and it shows a wide spread towards
G such that no peak is formed in the vicinity of the tonic
pitch class. In this case the pitch class G[4 is estimated as
the tonic, having a 2.33 Hc deviation. 8

Using distribution matching, we are able to identify the
tonic of 244 performances out of 257 (94.9% success rate).
Most of the errors occur in makams Kürdilihicazkar (3
recordings), Muhayyer (3 recordings), Suzidilara (2 recor-
dings), Isfahan and Mahur (1 recordings each), which have
complex pitch distributions. The errors are distributed most-
ly to the fourth (7 recordings) and fifth (4 recordings) of the
scale degree. In 4 recordings the tonic is identified as the
başlangıç (initial) note, which is the other melodic center
of the makam. The average distance between the annotated
tonic and the correctly estimated tonics is 0.23 Hc with a
standard deviation of 0.21 Hc for both methods.

For comparison, we also modify and test the approach
in [7] using the Makam Toolbox implementation. We use
the audio prominent pitch as the input to improve the f0-
estimation. The makam of the piece is provided to the al-
gorithm. We use a subset of the collection with 152 au-

6 The results are available in http://compmusic.upf.edu/node/164.
7 http://tinyurl.com/n42g5dh
8 Interestingly 2 out of 3 section links produced by the erroneous tonic

are correct, since the Hc distance between the annotated and estimated
tonic (2.33 Hc) is less than the optimal binarization threshold β = 3 Hc.
In the next step, we can align the audio and score in the note-level and
correct any errors and micro-deviances in the tonic.



dio recordings. The number of failed identifications is 46,
10 and 1 for audio-based template matching, PCD match-
ing and repetitive section linking, respectively. The results
from both of our methods are substantially better than the
results obtained from the Makam Toolbox.

6. DISCUSSION AND CONCLUSION

We proposed two novel methods that use score informa-
tion to identify the tonic of audio recording. Assuming
the most played pitch classes as tonic candidates, the first
method compares pitch class distributions computed from
the audio and score, and the second method searches for
a repetitive score fragments in the audio. We tested the
methodologies in a scenario of audio-score collections of
MMT, where the audio and score are already linked with
each other at the document level and the score includes
the notes, as well as the structural organization, the makam
and the tempo of the piece. The results indicate that score
information greatly simplifies the tonic identification task.
Moreover, the pitch deviances between the estimated tonic
and the annotated tonic are mostly indiscernible. These
findings point out the computational potential of knowled-
ge-driven methodologies using multi-modal information.

While template distributions computed from audio are
similar to the testing distributions with respect to the tuning
and limited intonation information in makam level, score
distributions indicate these similarities in the (more defini-
tive) composition level. On the other hand, the distribu-
tion matching method is still susceptible to the errors seen
us audio-based template matching. In the majority of the
recordings where distribution matching failed, it was ob-
served that the piece has modulations to pitches that do not
belong to the scale of the makam. These contrastive notes
and any event can be grouped into characteristic fragments,
melodic progressions and structural elements; eventually
building the unique the music piece. In general, the lack of
such temporal information is the main problem of distribu-
tion matching.

By linking repetitive sections, we only missed the tonic
of one performance. These results indicate the usefulness
of the temporal information in pitch related tasks. The
successful results obtained from tonic identification and
previously from section linking [4] motivates adapting the
“fragment linking” methodology for further computational
tasks. First is to generalize the method to less “complete”
scores, where structure information is unknown. Our ini-
tial tests show that tonic estimation by linking non-repe-
titive fragments and score fragments as short as 7 seconds
is possible. In the next step, we want to work on linking
audio and scores in the document level by trying to link
sections in each score with corresponding audio record-
ings. Highly ranked links will indicate the scores and audio
recordings related to the same work.

Another interesting direction is to generate predictive
models from the scores of each makam. The models can
be used to discover characteristic phrases, which could be
linked with the audio to further carry relevant tasks such as
makam recognition, melodic similarity analysis and expres-

sion analysis. Previously we found that multiple view-
points may be highly predictive in modelling MMT [3].
We plan to take advantage of these computational metho-
dologies and models to discover, navigate through and ap-
preciate cultural-specific aspects of makam music of Tur-
key and other music genres/traditions involving melody-
dominant content.
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