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ABSTRACT

Computational Musicology and Music Information Re-

trieval (MIR) address the core musical question under

study from a different perspective, often combining top-

down vs. bottom-up approaches. However, the evaluation

metrics for MIR tend to capture the model accuracy in

terms of the goal. 1 For instance, mode recognition is im-

plemented with a goal to evaluate and compare melodic

analysis approaches, but it is worth investigating if at all it

lends itself as one befitting proxy task. 2 This is particu-

larly relevant in non-Eurogenetic music repertoires where

the grammatical rules are rather prescriptive. We em-

ploy methodologies that combine domain knowledge and

data-driven optimisations as a possible way for a com-

prehensive understanding of these relationships. This is

tested on Makam, one of the understudied corpora in MIR.

We evaluate an array of feature-engineering methods on

the largest mode recognition dataset curated for Ottoman-

Turkish makam music, composed of 1000 recordings in

50 makams. We also address (ethno)musicology-driven

tasks with a view to gathering more profound insights into

this music, such as tuning, intonation, and melodic simi-

larity. We aim to propose avenues to extend the study to

makam characterisation over the mere goal of recognizing

the mode, to better understand the (dis)similarity space and

other plausible musically interesting facets.

1. INTRODUCTION

The melodic framework in many music traditions is of-

ten governed by the system of modes. A mode can be

viewed as falling somewhere between a scale and a tune

in terms of its defining grammar, which includes the tonal

² Equal contribution; corresponding authors.
1 We define goal as optimization of evaluation metrics, e.g., accuracy.
2 We define task as what a model is intended to learn, e.g., modal fea-

tures such as intervals, note sequence, relative salience, etc.
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material, tonal hierarchy, and characteristic melodic move-

ments [1±3]. While the function and the understanding of

these frameworks are distinct from a culture-specific per-

spective, in a broader sense, they may be considered as the

modes of the studied music culture. Some music traditions

that can be considered modal are Indian art (raga) music,

the Turkish/Arabic makam/maqam traditions, and the Gre-

gorian church modes. Concerning the relevance of musi-

cal mode in non-Eurogenetic music repertoires, there are

two contrasting viewpoints on whether to rethink or reject

modal structure. While the former advocates for adapt-

ing the concept of mode as an underlying framework to

systematise musical patterns, the latter tends to nullify the

syntactic jargon of using a foreign language grammar (e.g.,

mode) to interpret literature in another (e.g., makam).

Makam/maqam is the melodic framework that consists

of a system of scales defined by successive intervals, ha-

bitual melodic phrases, modulation pathways, ornamen-

tation techniques and aesthetic conventions. It is used in

Turkish (and Arabic, including the Middle East and West-

ern Indian Ocean) music, providing a complex set of rules

for compositions and performance. A typical subset of the

repertoire Ð Ottoman-Turkish makam music (OTMM) Ð

is well-established as a classical music tradition. Histori-

cally, there are a few hundred makams, whereas in prac-

tice, most of the repertoire is composed in one of the top

20 makams [4, 5]. In OTMM, melodies typically revolve

around an initial tone and a final tone [6], where the fi-

nal tone is referred to as being synonymous with tonic.

There is no definitive reference frequency to tune the tonic.

Recognizing makam is in itself a much more difficult task

due to various characteristics such as heterophony and high

variability in interpretations by musicians [6]. Moreover,

from the pedagogy and practice perspective, recognizing

the underlying makam with a unary label may not be in-

teresting enough. A knowledge seeker (e.g., from the per-

spective of an anthropologist or ethnomusicologist) would

rather gain wisdom on the characterisation of a makam and

its discriminatory aspects to differentiate it from seemingly

similar-sounding neighbouring makams.

In the realm of music information retrieval (MIR), mode

recognition as a task has been given considerable im-

portance from the purview of this, lending itself as one

befitting proxy to evaluate and compare melodic analy-
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sis approaches. Such a list is lengthy, ranging from au-

tomatic transcription, tuning analysis, music discovery,

music similarity and recommendation to computational

(ethno)musicology applications [7, 8]. However, in most

practical scenarios, mode recognition is not the central

theme but just the first step evidencing the robustness of

acoustic features and/or statistical models. In such a setup,

the recognition accuracy tends to become just another op-

timisation function. This simply indicates that the ethos

of mode recognition does not remain a task anymore but

a ‘goal’. In this work, we aim to critically address how

such an approach can mislead the uninitiated audience by

attributing the complexity of the musical characteristics to

the shortcomings of computational models.

It is inevitable to have thorough interdisciplinary col-

laboration to address the specifics in their entirety. How-

ever, we will approach the first study in this direction

from a corpus-based computational musicology paradigm.

This means developing culture-aware music technologies

combing data- and knowledge-driven methods. We aim to

benchmark the reported state-of-the-art literature, improve

baseline features and simulate intuitive models to contest

them. Once the potential of our approach in achieving the

‘goal’ accuracy is established, we break away from super-

vised (classification) to unsupervised (clustering) learning

to appreciate the nuances and facilitate a comprehensive

understanding of the same realm, this time as a ‘task’. The

byproduct of such a work is to provide tools for several

musicologically-relevant subtasks such as tuning and in-

tonation analysis, temporal modelling, and so on. While

musicological studies latch on qualitative and limited rep-

resentative examples, empirical methods work at the level

of larger corpora and are, therefore, particularly useful for

information retrieval-based tasks where scalability and re-

producibility are highly regarded, if not mandated. The

extracted features facilitate the curation of large audio cor-

pora not only by greatly reducing the time and effort spent

on manual annotations but also by providing automatically

extracted, reliable and reproducible information. It is to be

noted that we are limiting the scope of this work to building

on past work pertaining to aggregated feature representa-

tion disregarding any time information. Hence, sequence

models or sophisticated deep learning models (e.g. [9]) are

not included in the current discourse.

However, in such corpus-based studies that too are un-

derrepresented in MIR, the features extracted from the

data, 3 source code and the experimental results are not

always shared, making it more inaccessible to reproduce

or build on the literature. Thus the unavailability of public

tools, datasets, and reproducible experimentation are ma-

jor obstacles to computational music information research,

especially if such relevant tasks have not been applied to

studied music traditions earlier. The CompMusic project 4

contributed towards bridging this gap by creating open cor-

pora and computational tools for several non-Eurogenetic

music repertoires. This work builds on the dataset intro-

3 Commercial audio recordings are generally difficult to be made pub-
lic due to copyright issues.

4 https://compmusic.upf.edu/

duced in MORTY (MOde Recognition and Tonic Yden-

tification toolbox), which is the largest mode recognition

dataset curated for OTMM, composed of 1000 recordings

in 50 makams [10].

In this work, our contribution is two-fold. Firstly, we

adapt a new feature called time-delayed melody surfaces

(TDMS) from raga recognition to makam recognition that

shows comparable results to that of the current state-of-

the-art [11]. The second contribution is to establish a sim-

ilarity space of makam melodic features that characterise

the root cause of erroneous cases. The structure of the pa-

per is as follows. Section 2 discusses relevant literature on

mode recognition at large and a detailed review of makam

recognition, more as a goal and not a task. Section 3 de-

scribes the methodological details on audio preprocessing,

the dataset(s), and feature extraction/modeling. Next, the

experimental details regarding the model architecture and

evaluation strategies are discussed in Section 4.1. This es-

sentially engulfs the ‘goal’-oriented approaches and com-

parison with the state-of-the-art, followed by the discus-

sion of an alternative paradigm of unsupervised learning.

The latter aids in the ‘task’-based approach and highlights

the gained musicological insights from this study and pos-

sible avenues of extending to makam characterisation over

merely recognizing the label. Finally, Section 5 sum-

marises the contributions and poses the scope for further

developments in the current study.

2. MODE RECOGNITION

There has been extensive interest in mode recognition in

the last two decades; a good summary is presented in [12].

Most of this work focuses on culture-specific approaches

for music traditions like OTMM [10, 11, 13, 14], Carnatic

music [15±17], Hindustani music [18±20], Dastgah mu-

sic [21±23] and medieval chants [24, 25]. A considerable

portion of these studies is based on comparing pitch distri-

butions [13, 15, 16, 18, 19, 26], which are shown to be re-

liable in the respective mode recognition task or, for that

matter, goal per se. There also exist recent approaches

that are based on characteristic melodic motif mining us-

ing network analysis [17, 20], aggregating note models us-

ing automatic transcription [27±30], or audio-score align-

ment [31, 32]. All of these methods have been designed

specifically to address the studied music culture (with the

exceptions of [20] and [10]), and they are not generalisable

to other music cultures without considerable effort. Next,

we present some of the specific literature on mode recog-

nition that we base our analyses on.

Pitch Distributions (PD) and Pitch Class Distributions

(PCD) have been the state-of-art feature for mode recogni-

tion tasks for a very long time [10, 12, 13, 19], irrespective

of the fact that they completely disregard the temporal as-

pects of the melody, which are essential to a mode charac-

terisation [33]. Karakurt et al. [10] applied a joint recogni-

tion of makam and tonic using PDs and PCDs. In the train-

ing phase, the authors used kNN classifiers with either sin-

gle or multiple distributions per mode. Their best perform-

ing model achieved an accuracy of 71.8% on the OTMM
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recognition dataset (explained in Section 3.1). Gulati et

al. [20] proposed a novel feature for mode recognition in

the context of Hindustani and Carnatic ragas, called the

time-delayed melody surface (TDMS), which we will use

in this study. Authors reported that TDMS-based models

outperform PCD-based models of [10] in the raga recogni-

tion task.

YeËsiler et al. [14] used a Multilayer Perceptron (MLP)

on pitch distribution of first and last sections together

with overall distributions using a feature vector of 159 at-

tributes (53-TET * 3 octaves). The highest accuracy re-

ported is 75.6% on the OTMM recognition dataset with

additional insights on relevant segments for better discrim-

inability. Demirel et al. [11] advocate the advantage of

using chroma features for the mode recognition task as it

discards the need for automatic melody extraction of poly-

phonic audio, hence getting away with the imperfections

thereof. Authors created makam templates from anno-

tated data and used template matching using support vec-

tor machine (SVM) classifiers. The best performing model

achieved an accuracy of 77% on the OTMM recognition

dataset, which, to our knowledge, is the state-of-the-art in

makam recognition applied to the OTMM corpus. Other

works are not strictly mode recognition but use the frame-

work of representation-cum-distance-measure for discrim-

inating between allied raga-pairs [34, 35]. Section 4 dis-

cusses aspects we borrow from this methodology to quan-

tify the classification errors from a clustering viewpoint.

3. METHODOLOGY

In [10], mode recognition is formally defined as classify-

ing the mode of an audio fragment from a discrete set of

modes. In the context of OTMM, the problem reduces to

classifying the makam. Given that the mode recognition

framework is already established and that we are bench-

marking on literature applied to OTMM, we save some real

estate assuming that the data (pre)processing and partial

feature extractions will be exactly reproduced.

3.1 The OTMM Corpus and the Dataset

Considering the lack of open data sources for makam mu-

sic, the CompMusic project gathered audio recordings,

music scores and relevant metadata, and published in the

public domain the Dunya Ottoman-Turkish Makam Music

Corpus [5, 36], which is currently the most representative

corpus for OTMM available for computational research

purposes. From the corpus, [10] curated a test dataset of

audio recordings with annotated makam and tonic, called

the Ottoman-Turkish makam music recognition dataset.

The dataset covers 20 commonly performed makams 5

composed of 1000 audio recordings. A single makam is

performed in each recording (i.e. there are 50 recordings

per makam). To the best of our knowledge, this dataset

is the largest and the most comprehensive dataset for the

5 Namely: AcemaËsiran, Acemkürdi, Bestenigar, Beyati, Hicaz, Hi-
cazkar, Hüseyni, Hüzzam, Karcığar, Kürdilihicazkar, Mahur, Muhayyer,
Neva, Nihavent, Rast, Saba, Segah, Sultanıyegah, Suzinak, and UËsËsak.

evaluation of automatic makam recognition. Finally, the

dataset has been used by other researchers [10, 11, 14] to

demonstrate their methods, including the current state-of-

the-art makam recognition approach [11].

We use the latest version of the dataset. 6 We use the

pre-computed melody time-series (termed as ªpredomi-

nant melodyº by [36]) provided in CompMusic Dunya. 7

The pitch is detected at a hop-size to sampling-rate ratio of

0.023 that translates to 23 ms intervals for 44.1 kHz sam-

pled audio [37]. To compare across performances, it is cru-

cial to normalise the melody with respect to the tonic fre-

quency. For this study, we use manually curated tonic fre-

quencies linked from the Ottoman-Turkish tonic dataset. 8

To avoid the effect of nonlinearity in the logarithmic Hz

scale, we normalise the pitch time-series to a log-linear

cents scale.

3.2 Feature Extraction and Modeling

The next step is to synthesise derived features from the

raw predominant melody. These mid- or high-level fea-

tures can be interpreted and mapped to musicological in-

ferences. We follow an approach akin to Krumhansl’s [38]

to compute the histogram of pitch samples to construct the

pitch-class distribution. The pitch values are octave-folded

(0 Ð 1200 cents) and quantised into p bins of equal width.

The bin centre is the arithmetic mean of the adjacent bin

edges. The salience of each bin is proportional to the ac-

cumulated duration of the pitches within that bin. A prob-

ability distribution function is constructed where the area

under the histogram sums to unity. Even though we use

the equivalent of a PD method attributed to the high bin

resolution, we converge to a PCD [18]. The PCD configu-

ration is given in Section 4. The first row of Figure 1 shows

PCDs computed from each Mahur, Rast, and AcemËsiran in

the dataset, with the average pitch at each bin drawn as a

dashed line.

The next step is to construct a two-dimensional surface

based on the concept of delay coordinates (also termed

phase space embedding) [20]. The time-delayed melody

surface (TDMS) is a compact representation that captures

both the tonal and the temporal characteristics of melody,

is robust to octave errors, also partially nullifies the rele-

vance of melody transcription. We experiment with dif-

ferent parameters (See Section 4). The second row of

Figure 1 shows TDMS averaged from the TDMS of all

recordings in Mahur, Rast, and AcemËsiran makams in

the dataset. The horizontal and vertical trajectories in-

dicate pitch transitions between the pitch classes. The

isolated square shape-formation indicates a separation be-

tween the higher and lower tetrachords in the course of the

melodic progression. In both PCD and TDMS features,

makams Rast and Mahur are similar to a high degree. The

PCD of makam AcemaËsiran bears relatively small differ-

ences from the prior two; however, the TDMS represen-

tation manages to significantly differentiate itself via dif-

6 dlfm2016-fix1 Ð https://zenodo.org/record/4883680
7 https://dunya.compmusic.upf.edu
8 https://zenodo.org/record/260038
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Figure 1. PCD (top row) and TDMS (bottom row) representations of Mahur (left column), Rast (middle column), and

AcemaËsiran (right column) makams.

ferences in melodic progression, captured through the de-

lay coordinates. For example, in the TDMS representa-

tion, makams Mahur and Rast show clear transitions be-

tween 6th (900 cents), 7th scale degrees (1100 cents), and

the tonic pitch class, whereas makam AcemËsiran exhibits a

progressions between 3rd (400 cents) and 6th scale degrees

(900 cents).

4. EXPERIMENTS

Akin to the title of the paper, one of the main goals of the

study is to treat makam recognition as a task and not a goal

in itself. Our experiments are divided into two parts. The

former addresses the ‘goal’-oriented aspect, i.e., the best

combination of features and classifiers in order to achieve

the optimal accuracy. We also stress on intuitions why

certain configuration of train-test partitioning would make

more sense than others or why certain classifier is meant

to ‘learn’ and not be totally data-proximity dependent. We

report and discuss a subset of the results relevant to the op-

timal settings; the full experimental results are made avail-

able. 9

For PCDs, we use the empirical ªoptimalº parameters

for OTMM reported by [10], namely a bin resolution of 25

cents and Gaussian smoothing applied using a kernel width

of 25 cents. We set the bin resolution of TDMS to 25 cents

to compare with PCD, and grid-search time delay indices

(∈ {0.25, 0.5.1, 1.5, 2.5, 5} seconds), compression expo-

nents (∈ {0.1, 0.25, 0.5, 0.75, 1}) and Gaussian smooth-

ing kernel widths (∈ {0, 12.5, 25, 50} standard deviation

in cents) in the classification experiments below to find the

optimal configuration for OTMM.

9 https://sertansenturk.com/work-research/

ismir-2022-makam/

4.1 (Supervised) Classification

In line with the objective of supervised learning, i.e., to

model the intra-class similarity and inter-class differences,

the inherent ‘goal’ is to maximise classification accuracy.

However, we carefully choose the feature set and classi-

fier in order to suit the music theory. That is to say, we

aim to incorporate knowledge constraints into mainstream

data-driven computational models. We restrict ourselves

to k-nearest neighbors [10, 12, 13, 19, 20], support vector

machine [11, 12], multilayer perceptron [14] and logistic

regression [12] that were extensively used in past mode

recognition work.

Past studies used different cross-validation (CV) tech-

niques such as leave-one-out CV [13], 10-fold CV [10,

19, 20] and nested k-fold CV [11, 14]. In our initial ex-

periments, we compared nested 10-fold CV, 10-fold CV

(without any unseen test set), and 10-times repeated shuffle

split CV with 10% of the recordings reserved as test set for

each repetition. We used stratified splits in all our exper-

iments to keep the makam classes balanced and repeated

each experiment 10 times. We report the mean & stan-

dard deviation of classification accuracy reported on the

test set. We also compute a confusion matrix for each test

set and aggregate it across all test sets in each repeated ex-

periment per model. We report the results of the 10-times

repeated shuffle split CV in the rest of the Section. Similar

to [20], we observed that TDMS is robust in different time

delay indices (between 0.5 and 2.5 seconds), kernel width

(less than 25 standard deviations in cents) and compression

exponent (above 0.25). For the rest of the experiments,

we report results for TDMS with an ªoptimalº configura-

tion of 1-second time-delay index, 12.5 cents of smoothing

kernel width and a compression exponent of 0.5. Table 1
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Model PCD TDMS

Support Vector Machine 71.0∓ 3.2% 77.2∓ 3.5%

Multilayer Perceptron 70.9∓ 3.8% 74.6∓ 5.0%

k-nearest Neighbors 68.2∓ 3.4% 70.2∓ 3.1%

Logistic Regression 66.8∓ 3.9% 75.5∓ 4.1%

Table 1. Average ∓ standard deviation of classification

accuracy for all feature-classifier combinations.

shows the mean and standard deviation in classification ac-

curacy for PCD and TDMS using different models. In sum,

TDMS with SVM works the best at par with the current

state-of-the-art [11]. TDMS consistently performs better

than PCD; statistical significance results are kept out of the

scope of this work.

The associated confusion matrix for the optimal per-

forming system is shown in Figure 2. Makams {AcemaËsi-

ran, Hicaz, Hüzzam} and {Bestenigar, Rast, UËsËsak} are ex-

amples of highly discriminable and highly confused pairs

respectively. The inferences from the confusion matrix are,

however, limited to qualitative evaluation of the confused

cases and a count of them. In the next Section, we propose

a new approach to compute the pairwise distances in a clus-

tering scenario which facilitates a quantitative evaluation

of the proportion and magnitude of the confusions. This is,

in a way, a manifestation of the recognition task wherein

we model the inherent complexity in the data rather than

the limitations of the method.

Figure 2. Aggregated confusions matrix for the optimal

performing system: TDMS with SVM.

4.2 (Unsupervised) Clustering

To address the second half of the experiments, our focus

moves to the ‘task’-oriented results. This, we believe, is

the highlight of the current contribution in terms of gain-

ing/reconfirming musicological knowledge/concepts from

the computational model that can feed back into the peda-

gogy and practices to further enrich the repertoire.

A typical mode recognition study would stop at this

point after the goal accuracy is achieved [10, 11, 20]. Even

though we report comparable results to that of the current

state-of-the-art accuracy, we are keen on evaluating how

much the representation-cum-distance-measure attribute to

musicological insights. Over and beyond the error analy-

sis, we stress validating the gap and reinforcing other pos-

sible avenues, so the complexity of the musical characteris-

tics is not attributed to the shortcomings of computational

models. One such way is to disregard the makam labels

and study the melodic similarity space of relevant predictor

features. Through these methods, we aim to verify whether

the machine learning models indeed ‘learn’ what they are

intended for. We present three complementary and sup-

plementary retrieval scenarios to corroborate the ‘task’ de-

tails and bridge the gap that the best classification could

achieve.

Hierarchical clustering: In the presence of theoreti-

cal grouping of makams, yet not having a prescription on

the counts, it is practically impossible to set a k for a k-

means clustering algorithm. However, hierarchical clus-

tering seems to offer a dynamic solution in such scenar-

ios. Here, each element is treated as distinct clusters at the

lowest threshold, whereas there is a single giant cluster at

the highest threshold. We present, in part of Figure 3, the

dendrogram representation to capture the melodic similar-

ity/grouping space across the 20 makams obtained from

the hierarchical clustering of the TDMS features averaged

from the 50 recordings per makam using Canberra dis-

tance. We use the Canberra distance to contrast with the hi-

erarchical clustering reported in [14, see Figure 2] that was

calculated from averaged pitch distributions, and keep the

empirical experimentation of different distance metrics out

of the scope. The groupings are shown in different colours,

and the relative height where the tree elements merge is in-

dicative of the normalised threshold. At the highest thresh-

old, makam Saba isolates itself from the rest 19; this is in-

dicative of the distinct nature of the pitch distribution cap-

tured through TDMS. Makam-pair (Rast, Mahur) show a

very low distance, indicating high similarity in the feature

space. A high distance between the (Hüzzam, Hicaz) pair,

as shown in other figures, is also evident.

Cluster purity matrix: One supplementary way to cap-

ture all pairwise distances is through an unconventional

method of computing a distance matrix with the salience

function of cluster purity. This is broadly a homogene-

ity measure that evidences the quality of clustering. Any

value close to 1 indicates perfect clustering, while 0.5 sig-

nifies random clustering. Out of the
(

20

2

)

= 190 distinct

makam-pairs, 115 pairs show a cluster purity score ≥ 0.85,

73 other pairs bear cluster purity values in the range of (0.5,
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Figure 3. Left: dendrogram representation to capture the melodic similarity space across the 20 makams obtained from the

hierarchical clustering of the TDMS. Right: the cluster purity matrix capturing the homogeneity of pairwise distances.

0.85), and none below a score of 0.5. We plot the pair-

wise purity scores partly in Figure 3, this representation

has an intuitive inverse proportionality with the confusion

matrix. The makam indices obtained from the dendrogram

are aligned with that of the current matrix. It is intuitive to

follow that the row corresponding to makam Saba (which

is the most distinctive) has got the highest cluster purity

(mode=1) with many other pairs, whereas the aforemen-

tioned confusable pairs yield a random clustering. This vi-

sualisation provides a complementary view of what is ag-

gregated in the dendrogram.

Query retrieval score: The third scenario we present

complementary to the clustering is the receiver-operated

characteristics (ROC). We use the same two makam-pairs

in the context of a query search for all possible match-

ing and non-matching pairings out of each makams-pair.

The ROCs in Figure 4 show the true positive rate versus

the false positive rate achieved in the detection of non-

matching makam pairs for the PCD (we consciously chose

PCD over TDMS to introduce diversity) representations

for four unique distance measures, inspired from [34]. The

subplots correspond to makam-pairs (Hüzzam, Hicaz) and

(Rast, Mahur), which are examples of highly discriminable

and highly confused pairs, respectively. The ROC curves,

the area under the curve (AUC) and equal error rate (EER)

clearly indicate a better retrieval for the former, while the

latter almost grazes the diagonal. We have inferences on

why certain distance metric works better, but discussion

on their relative performance is not directly related to the

main narrative of this work and hence omitted [34, 39].

5. CONCLUSION

We employed methodologies that combine domain knowl-

edge and data-driven optimisations with a view to under-

standing the makam recognition ‘task’ in depth. We report

Figure 4. ROCs obtained using correlation (corr), eu-

clidean (eucl), city-block (ctbl), and Bhattacharyya (bhat)

distance from PCDs. Left: (Hüzzam, Hicaz) and right:

(Rast, Mahur) makam-pairs.

comparable accuracy (77.2%) with the state-of-the-art [11]

using the newly adapted TDMS feature with SVM. This

achievement evidences the credential in our approach that

provides us with a solid ground to argue the critique on

goal- versus task-oriented approaches by comparing and

contrasting. We have reported only the best-performing

configuration in this paper 10 which will eventually be ex-

panded to include temporal features and sequence mod-

els. In sum, we advocate that good supervised learning

performance is a necessary but insufficient condition for a

computational representation-cum-distance-measure to be

considered informative for all purposes. As future work,

we will incorporate convolutional networks and transform-

ers to reproduce makam recognition on OTMM corpus to

understand the potential of deep learning and the trade-off

between goal and task involved. The application of such

an approach aids in understanding music and other forms

of sound culture and developing methodologies for cross-

cultural mapping and comparing these materials.

10 Array of alternate configurations: https://sertansenturk.
com/work-research/ismir-2022-makam/
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