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Abstract

Tabla is a sophisticated, centuries-old percussion tradition from North

India based on timbral sequences. We model these sequences in a predic-

tive framework with variable-length Markov models (VLMMs). Using a

database containing nearly 30,000 strokes in 35 compositions, we show that

VLMMs have high predictive accuracy, with an average perplexity of 1.80,

and median perplexity of 1.19, on a task with 42 distinct symbols. This

basic framework is extended by the introduction of several new smoothing

techniques that determine how to integrate predictions from the different or-

der models. The model is then extended to include parallel representations

of the sequence, a technique known as Multiple Viewpoint modeling.

The work is then extended to the problem of recognizing strokes from au-

dio. In this hidden context, the identity of the previous stroke is not revealed

at each time step. A variable-length Hidden Markov model (VLHMM) is

used to determine the next-symbol distribution that is used in computing the
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perplexity. We detail how the forward probabilities can be efficiently com-

puted for the VLHMM using by traversing a prediction suffix tree (PST)

that is used to represent sequences. Using a VLHMM with a maximum

order of 3, we obtain an average perplexity of 2.31, with a median of 1.16

on a 9 target task. To the best of our knowledge, this is the first use of

variable-length Hidden Markov models for music modeling or prediction.

1 Introduction

Anticipation is an essential component of listening and performing. Regularities

in the structure of music lead to expectations that focus attention and guide per-

ception [30]. For musicians, anticipation is essential for synchronization. Markov

and n-gram models have been used extensively to model temporal structure in

music [1]; they have been successfully applied to algorithmic composition, timbral

analysis [5] [29], and music cognition [36].

In these experiments, we are concerned with discrete, mid-level predictions,

what might be colloquially called “note-level”. This contrasts with low-level mod-

eling of audio frames, which is commonly done for music information retrieval

tasks such as genre-recognition or music similarity [43]. To date, most note-level

modeling has focused on symbolic music, due to the difficulty of transcribing music

from audio. Here we begin with a symbolic prediction task and then generalize

to the more difficult task of prediction from audio. Our motivation for this re-

search is to develop systems that can interact naturally with human performers,

even in improvised settings. This requires the system to anticipate what will come

next. Predictive accuracy is one significant measure of model quality. By develop-
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ing more highly predictive models we can develop computational models of music

theory that help to describe and elucidate musical traditions.

In our first experiment, we attempt to predict how symbolic tabla compositions,

which essentially consist of sequences of named strokes, will continue. Our basic

task is to predict the next stroke (i.e. to compute the next-symbol distribution),

given a context that represents the previous sequence of strokes. A fundamental

observation about musical patterns is that they are often of wildly different lengths

— this happens both for aesthetic reasons, and because patterns are frequently

combined hierarchically to form longer patterns. This is particularly true in solo

tabla music, where musically significant patterns can range in length from a couple

to hundreds of strokes.

We show that variable-length Markov models (VLMMs) are an effective mod-

eling technique in these situations, with high predictive accuracy. We introduce

new smoothing techniques for integrating the fixed-order Markov models that com-

prise the VLMM, based on a family of exponential curves. Further, building upon

previous research [14], we show that performance can be improved by using an

ensemble of VLMMs, where each component is used to represent different aspects

of the surface structure (described in Section 2.4), a technique called Multiple

Viewpoint (MV) modeling.

The second experiment attempts a similar prediction task, but beginning with

an audio recording. Rather than a discrete sequence of symbols representing stroke

names, after the audio is segmented we have a sequence of feature vectors com-

puted from the audio. Given a context, which in this case consists of the past

several feature vectors, our task is to compute the next-stroke distribution. In

the symbolic prediction task, as time advances, the true identity of the stroke is
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revealed. By contrast, when we are working from audio, the label remains hidden,

making it much harder to compute the next-stroke distribution. Hidden Markov

Models are extensively used to model such situations, with hidden states repre-

senting the information we would like to know (i.e. strokes), and observations

modeled as samples drawn from probability distributions that depend on the hid-

den states. Our main contribution is to extend the VLMM to the hidden domain.

We show that such variable-length Hidden Markov models (VLHMMs) outper-

form low-order HMMs as well as fixed, high-order HMMs. High-order VLHMMs

are better able to utilize long patterns to disambiguate observations and predict

continuations. Integrating low- and high-order models, as variable-length models

do, further improves prediction by allowing low-order information, which is less

specific but more reliable, to be incorporated as well.

2 Background and Related Work

2.1 Tabla Solo

Tabla is the most widely used percussion instrument in Indian music, both as an

accompanying and solo instrument. It is used extensively in classical, folk, film,

popular, and devotional music, and its distinctive timbre forms one of the ubiq-

uitous signifying elements of the music of North India. Unlike Western classical

music, Indian classical music makes extensive use of percussion.

Its two component drums are played with the fingers and hands and produce a

wide variety of timbres, each of which has been named (Table 2.1). A sophisticated

repertoire of compositions and theme-based improvisations has developed over
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hundreds of years. Tabla is a natural candidate for Markov modeling because

it consists, at a basic level, of a sequence of discrete states that are temporally

structured. Tabla is particularly interesting because of the complex patterns and

dependencies that are present in typical compositions. Although tabla is primarily

learned as part of an oral tradition, it is also notated using a system that indicates

strokes and their durations.

The repertoire of tabla can be divided into two basic categories, structured

improvisations, and through-composed material. In the former category are qaidas,

a theme and variation form, and peshkar another type of thematic improvisation,

and relas. Relas are very dense, fast drum-roll-type textures, that are played in a

smooth, flowing manner. In the latter category are gats, tukdas, and chakradhars,

various types of fixed compositions.

Little work to date has been done on statistical modeling of tabla. Gillet

[29] and Chordia [12] focused on tabla transcription using a Bayesian classifier

and HMMs. Bel and Kippen [7] created a symbolic model of tabla improvisation

based on a context-free grammar, one of the earliest computational tabla models.

The current work builds on the generative tabla system of Rae and Chordia [41].

Compared with the authors previous work, the novelty of this work lies in 1)

application of a Multiple Viewpoint framework 2) extension of the variable-length

Markov framework to the hidden domain for use with audio 3) use of a prediction

(cross-entropy) rather than classification (recall / precision) for evaluation.
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Table 1: Tabla strokes used in the current work. The drum used is indicated,
along with basic timbral information. “Ringing” strokes are resonant and pitched;
“modulated pitch” means that the pitch of the stroke is altered by palm pressure
on the drum; “closed” strokes are short, sharp, and unpitched.

Stroke name drum used timbre
dha compound ringing bayan
dhe compound ringing bayan
dhec dayan closed
dhen dayan ringing bayan
dhin compound ringing bayan and dayan
dun compound ringing bayan and dayan
ge bayan ringing bayan
geM bayan ringing bayan, modulated pitch
ke bayan closed
na dayan ringing dayan
nec dayan closed
nen dayan ringing dayan
rec dayan closed
te dayan closed
tin dayan ringing dayan
tun dayan ringin dayan
tunke compound closed bayan, ringing dayan
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Figure 1: Illustration of tries built for the sequence {ABAB} followed by the sym-
bol {C}. Superscripts represent count values, and subscripts represent probability
values. Rounded boxes represent siblings, while italicized number at the left of
a rounded box represents the total count among the siblings, which is used to
calculate the ’probability’ values. Trie 3 includes escape probabilities.
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2.2 Visible Markov Models (VMMs)

Markov models are arguably the most successful and widely used methods for mod-

eling the temporal structure of sequences with discrete state spaces. They are the

basis for state-of-the-art algorithms for lossless compression [8], speech recognition

[31], language modeling [10], biological sequence analysis [28], and financial models

[9]. In music, VMMs and HMMs have been used for algorithmic composition [1],

timbral analysis [5, 29], structure analysis [33], and music cognition [30].

The basic prediction problem can be stated as follows: given a sequence of

discretely valued observations, {x1, . . . , xt−1}, compute the next-symbol distribu-

tion P (xt|x1, . . . , xt−1). In music, {x1, . . . , xt−1} might be a series of piano notes

constituting a melody, a series of drum-hits in a rhythmic pattern, or a series of

chords in a song. Given what has been heard, we would like to be able to predict

the next event – both what will happen, and when it will happen. A musical

event can be described by various attributes, such as pitch, duration, timbre, and

loudness, that we might wish to predict.

Markov models are generative, probabilistic models based on a succession of

discrete states. A state is represented by one of an alphabet of symbols (xi ∈ S).

Sequences of symbols are often referred to as strings, reflecting their use in language

models. Markov models assume that, given the current state, the next state is

independent of previous states: P (xt|x1, . . . , xt−1) = P (xt|xt−1). This can easily

be generalized so that the next state depends on a fixed number, n, of past states:

P (xt|x1, . . . , xt−1) = P (xt|xt−n . . . xt−1). If we have sequences generated by such a

model, then this conditional probability can be calculated by counting how often

the symbol xt follows the context. Strings of length n are often referred to as
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n-grams.

If we want to model long-term dependencies, we must increase the order n.

However, the total number of possible n-grams increases exponentially: vn, where

v is the number of symbols. In music applications, such as melody prediction,

where the past ten events could easily influence the next event, and where there

might be a dozen or more pitches, we are left attempting to assess the relative

frequency of greater than 1210 (12 billion) n-grams. Even for large databases,

most n-grams will never have been seen, leading to the so-called zero frequency

problem [45, 15]. In a test sequence, when we encounter an n-gram that has not

been previously seen, our fixed-order model assigns it a probability of zero. Due

to this sparsity problem, there is a fundamental trade-off between the predictive

power of longer contexts, which have longer memories, and the unreliability of

higher order n-gram counts.

Variable-length Markov models (VLMMs) address this problem by using an

ensemble of fixed-order models, up to order n, to smooth probability estimates.

The basic idea is to use the high-order count, if it can be found, and to otherwise

recursively back off to lower-order models until a match for the sequence is found

[45]. A variation, called interpolation smoothing, does not stop when a match

is made, but computes a weighted average of probability estimates across all or-

ders [11]. Both these techniques utilize escape probabilities that reserve a certain

amount of probability mass for unseen n-grams [11]. Smoothing addresses the

trade-off between the specificity of higher-order models (if a match can be found)

and the reliability of the n-gram counts for lower-order models. Smoothing can

have a substantial impact on predictive performance, and a variety of smoothing

techniques, such as Laplace, Katz backoff, Good-Turing, Kneser-Ney, 1/N, and
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parametric smoothing have been previously introduced [34, 11, 14, 13].

Rather than naively storing counts for all n-grams in a table, to avoid space

complexity that increases exponentially with model order, and to make it easy

to search for a sequence, n-grams and counts are stored in a partial k-ary tree

called a prediction suffix tree (PST) [44]. Figure 1 is the PST for the sequence

{ABAB}+{C}. In the PST, branches represent the succession of certain symbols

after others, and a node at a certain level of the PST holds a symbol from the

sequence, along with information about the symbol such as the number of times

it was seen in the sequence following the symbols above it, and the correspond-

ing probability of occurrence. In 1, the subscript below a symbol represents the

symbols probability given the context, defined by the path through the trie to

that node, while the superscript above it represents the count value. Thus, in

the topmost level, the probabilities represent the priors for the symbols. During

construction of the PST, symbols are fed sequentially into the system one-by-one.

For the above example, after the sequence {ABAB}, the PST looks like Trie1 in

figure 1. When a new symbol {C} follows, corresponding nodes are created at

all levels of the trie: 5-gram node using {ABABC}, 4-gram node using {BABC},

trigram node using {ABC}, bigram node using {BC} and a 1-gram/prior entry

for {C} at the topmost level. The corresponding probabilities are also updated

resulting in Trie 2 in 1.

VLMMs form the basis for state-of-the-art music prediction and generation

systems [26, 23, 2, 3, 4, 32, 25, 24, 21, 35]. These systems start with symbolic input,

typically MIDI (musical instrument digital interface), and learn pitch and duration

sequences using a VLMM. Some of these systems have tried to improve prediction

by using abstractions of the basic data types by, for example, representing pitches
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Figure 2: Family of exponential curves used for parametric smoothing model. Each
curve represents a given exponent coefficient and shows relative weight assigned
to each order while taking weighted average.

in terms of broader pitch-regions [35]. The practical motivation for this is to be

able to find higher-order matches when a more specific representation would yield

none.

2.3 Smoothing

Smoothing addresses the tradeoff between the specificity of higher-order models

and the reliability of the n-gram counts for lower-order models. Since higher order

models are much sparser, many n-grams will be assigned zero probability, and

counts for n-grams that have been observed will tend to vary greatly based on

the particular training database. This variance can be reduced by incorporating

information from lower order models. There are two basic types of smoothing
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algorithms: back-off models and interpolation models. Given a test sequence, a

back-off model will search for the entire sequence, and if no match is found in

the trie, the process continues recursively after dropping the first element of the

sequence, stopping once a positive match is found and the count for that n-gram

count is greater then some threshold. Interpolated smoothing, by contrast, always

incorporates lower order information even if the n-gram count in question is non-

zero.

In our previous work [14], two smoothing methods were studied, Kneser-Ney

(KN) and an averaging method we termed 1/N . KN was adopted directly from

language processing because earlier work showed it to be a superior smoothing

method in the context of natural language processing [11]. In the 1/N smoothing

method, weights for the n-th order model are given by 1
(maxOrder−n+1)

, giving greater

relative weight to higher-order models We found that the 1/N model outperformed

KN.

We introduce a back-off model and a novel, parametric approach based on

generalizing the 1/N technique. For the back-off model, the match threshold was

set to two; if the pattern was observed only once at a given level, we continued to

back-off. The motivation for setting the threshold greater than one was to ensure

that, particularly for higher-order models, that a match was more likely to be a

genuine pattern. The parametric model is based on a family of exponential curves

given by

w(n) = a
{(

1− c

a

)( n

maxOrder

)x}
+ c

n = 0, 1, 2, 3...maxOrder

(1)

13



As x increases, the curve rises more steeply, giving more importance to higher-

order models as can be seen in Figure 2. The parameters a and c are used to set

the minimum and maximum allowable weights.

2.4 Multiple Viewpoints

MVMs, introduced by Conklin [19, 16, 20, 18, 17, 46], and developed by others

such as Pearce [38, 37], further generalize the idea of integrating an ensemble of

predictive models. The extension is based on the fact that music can be simulta-

neously represented in many ways. For example, a melody can be thought of in

terms of chromatic pitches, intervals, scale degrees, or contour; a rhythmic pattern

can be thought of in terms of onset times, durations or position-in-bar. If we are

trying to predict the next note in a melody, having multiple representations is

useful in capturing structure that is obvious given one representation but less so

in another.

In a conventional context-dependent predictive model, correlations can only be

modeled by tracking a new variable, which is formed by taking the Cartesian prod-

uct of the domains of basic attributes like pitch, duration, and loudness [16]. This

makes finding an exact match for a context practically impossible. By contrast, a

multiple viewpoints system maintains an ensemble of predictive models of varying

degrees of specificity. This allows it to match specific, complex patterns when the

information is available in the trained model, and gracefully fall back on simpler,

more abstract models when it is not. MVMs merge the predictions of their models

using a weighted average, according to each model’s uncertainty at a given time

step. This is quantified using the entropy of the next-symbol distribution (Section
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2.5) [20].

2.5 Merging Model Predictions

An important point here is the process of merging the predictions of each of the

models. Though there are many different ways to do this, we use a weighted

average as described in [38]. Each viewpoint model is assigned a weight depending

on its cross-entropy at each time step. The weight for each model is given by

wm = H(pm)/Hmax(pm), where H(pm) is the entropy of the probability distribution

and Hmax(pm) is the maximum entropy for a prediction in the distribution. Higher

entropy values result in lower weights. In this way, models that are uncertain

(i.e., have higher entropy) make a lesser contribution to the final distribution. The

distributions are then combined by taking their weighted average.

3 Experiment 1: Symbolic Tabla Prediction

3.1 Viewpoints

As described in [20], a type is an abstract property of a musical event, such as start

time, note duration or melodic contour. A simple type uses one musical property,

such as the ”Pitch Class” type described above. In contrast, a cross-type consists

of two or more simple types considered together and represented as a tuple T1-

T2. An example would be a cross-type modeling the relationship between pitch

class and note duration. Another possibility is a derived type. A derived type is

dependent on the relationship between one or more types, like melodic contour,

which depends directly on the pitch class. The number and complexity of the
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viewpoints chosen depends on the nature of the sequence being modeled and the

problem in question.

In addition to the basic viewpoints of strokes and durations, we also introduced

a cross-type which modeled stroke-duration pairs, and another which modeled the

strokes metric position in the rhythmic cycle. The stroke-duration viewpoint would

allow as to distinguish patterns such as dha-tete and dhatete. In the first, the

stroke dha is twice as long. The stroke-PositionInCycle viewpoint was based on

the intuition that certain stroke tend to appear at strong positions in the metric

cycle. For example dha is often used to resolve phrases and thus has a greater

likelihood of appearing on the first beat, where most long phrases conclude. The

following table summarizes these viewpoints.

1. Strokes: Numbers representing the unique tabla strokes

2. Durations: Interval between two strokes as a ratio of each bar

3. Stroke-Duration: a cross-type consisting of a stroke and its duration

4. Stroke-PIC: a cross-type relating a stroke to its metric position in a complete

rhythmic cycle

3.2 Long Term and Short Term Models

One problem that we had to address was the frequent repetition of themes and

phrases. Because a large part of music on the tabla is built upon a theme-variation

structure, the theme for a specific song is repeated quite often within that song.

In addition, some phrases and their improvisations make sense only in the right

context - in such cases, a prediction based on a large generic database will almost
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Figure 3: Block diagram illustrating the how the models are combined in the
VLMM to make the next-stroke prediction.

always sound out of place. A common limitation of a predictive model built on

a large database is that the model is usually unaware of any patterns specific to

a particular song. The model becomes too general to be effective; patterns and

predictions which seem obvious to humans are missed because they are infrequent

in the training database or because there are simply too many possibilities to

choose from. We needed a system that would make very specific predictions in

some parts of a song, and fall back on the general rules in other parts. To solve

this problem, we used two models: a long-term model (LTM) built on the entire

training database, and a short-term model that starts out empty and is built up as

a particular composition is processed [20]. Each of our viewpoints has a long term

model (LTM), which is fed with a database of tabla compositions, and a short

term model (STM), which is trained only upon the current song being evaluated.

When a decision needs to be made, predictions from both models are combined

using a perplexity-based merging scheme (Figure 3). More weight is given to the

model that has the lower perplexity.
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3.3 Merging Viewpoints

When a prediction is to be made at a given time-step, the LTM and STM are

combined into a single distribution for each of three PSTs (Strokes, Durations,

and Stroke-Durations). Additionally, the Strokes-Durations cross-type is combined

with the basic stroke and duration types by marginalizing the Strokes-Durations

predictive distribution. The Strokes-PositionInCycle viewpoint is only used in the

STM. The LTM cannot be used for this viewpoint because there are many different

rhythmic cycles in the corpus leading to very different relations between strokes

and metric position. At each time-step, the model checks the current position in

the cycle (the length of the cycle is defined by the length of the theme for that

song – if the theme is not complete yet, then this PST is not used) and calculates

the probabilities for strokes at this position. The resultant distribution is then

combined with Strokes distribution. The Strokes and Durations models are then

normalized leading to a single predictive distribution for each that can be used to

calculate the cross-entropy.

3.4 Tabla Database

The database used for training the model is a set of traditional tabla compositions

compiled by tabla maestro Alok Dutta [27]. A Humdrum-based syntax called **bol

[12] was developed to provide a notation for representing the compositions. Each

**bol file encodes the name and duration of every stroke in the song along with

metadata describing details about the song like its form, meter and tempo. The

online database consists of 34 such compositions comprising a variety of forms:

13 Qaidas, 5 Relas, 4 Tukdas, Gats and chakradhars, 2 Keharva thekas, 1 Dadra
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and 1 Laggi. Altogether, there are 27,189 strokes in the dataset composed of 42

unique symbols. In addition to the symbolic database, an audio database of these

compositions was also synthesized. This is described in more detail in Section 4.1.

3.5 Evaluation

A common domain-independent approach for evaluating the quality of model pre-

dictions is cross-entropy [34]. If the true distribution is unknown, the cross entropy

can be approximated by H = − 1
n

∑n
i=1 log2(pi), which is the mean of the entropy

values for a given set of predictions and is expressed in bits. To illustrate, at a

given step t, we note the true symbol. We then look at the predictive distribution

for symbols at step t− 1 and calculate the entropy for the true symbol at step t.

After running through all the symbols in the test set, these entropies are averaged,

giving a cross-entropy result for that particular test set. A closely related concept,

often used in natural language modeling is perplexity per symbol [34], defined to

be P = 2H , where H is the cross-entropy as described above. Perplexity has a sim-

ple interpretation, it is the number of choices that the model is confused between

and would be equivalent to the model choosing uniformly between P choices.

Cross-validation was performed using a leave-one-out design at the song-level.

For each of the 35 compositions, the LTM was trained on the remaining 34. The

STM was trained on the remaining song. Reported results were averaged over all

35 trials. [41].
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Model
Strokes Strokes MV Durations Durations MV Stroke-Duration Stroke-PIC

Av. Med. Av. Med. Av. Med. Av. Med. Av. Med. Av. Med.

BO 2.71 1.08 2.41 1.07 2.11 1.014 1.83 1.01 3.84 1.29 2.58 1.40

1/N 2.08 1.37 1.80 1.19 1.44 1.11 1.30 1.06 2.69 1.58 2.55 1.37

P (x=1) 2.00 1.33 2.03 1.27 1.55 1.09 1.42 1.07 2.60 1.43 2.57 1.37

Table 2: Average and median of perplexity results for for back-off, 1/N, and para-
metric (with exponent coefficient equal to 1) smoothing methods. Results for com-
bined models using a maximum order of 10. MV refers to the multiple-viewpoints
model in which the Stroke-Duration and Stroke-PIC viewpoints have been incor-
porated.

Durations Strokes Stroke-Duration

Order 10 1.76 3.05 4.66

Table 3: Summary of perplexity results for LTM for order 10.

3.6 Results and Discussion

Table 2 summarizes the perplexity results for the different smoothing models and

different prediction types. For all tasks the interpolation-based smoothing methods

have lower average perplexity than the back-off method. Perplexity for stroke

prediction using the multiple viewpoints (MV) is 2.03 for the parametric model

(using an exponent of 1) and 2.41 for the back-off model, with similar differences for

Durations and Stroke-Duration. This compares favorably to a baseline perplexity

of 12.24 when using only using prior probabilities for strokes. When predicting

Stroke-PIC there are no significant differences between smoothing methods.

Incorporating the Stroke-Duration and Stroke-PIC viewpoints improves per-

formance when predicting strokes (2.41 vs 2.71) and durations (1.83 vs 2.11) for

the back-off model. For the parametric model, these additional viewpoints do not

seem to significantly improve performance. Table 3 shows the results when only

the LTM is used with 1/N smoothing. It can be seen that incorporation of the
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Figure 4: Comparison of perplexity between BO and 1/N models.

STM signficantly reduces perplexity for stroke prediction (3.05 to 1.37).

Median entropy is less than average entropy for all models (Table 2). For ex-

ample, when predicting strokes using 1/N smoothing, average perplexity is 2.08

and median perplexity is 1.37. Interestingly, while average entropy is lower for

interpolation models compared with BO, median entropy is lower for BO. This is

true for both strokes and durations. As can be seen in Figure 6, the distribution

of entropy values showed a larger peak near zero and fatter tail for BO vs. inter-

polation methods. This is perhaps due to the fact that back-off methods do well

when a high-order match is made but do not degrade as well because lower-order

information is not fully integrated. More specifically, if a high-order model does

not find match at a given order the escape probability is used. If several high-

order models are combined then the multiplication of escape probabilities can lead

to very small probability values. If that stroke then occurs it will lead to a high

entropy value. Outliers can clearly be seen in Figure 6, giving support to this

idea. Thus it seems that the appropriate choice of smoothing algorithm depends
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Figure 5: Perplexity as a function of exponent coefficient in parametric model.
There seems to be an optimal range between 1 and 2.

on ones risk function. If we wish to minimize very bad misses (a sort of minimax

strategy), then interpolation methods are preferable, whereas if we can tolerate

such occasional bad misses BO will lead to lower median entropy.

Figure 5 shows results for different values of the exponent for the parametric

model. It seems that there is an optimum range for the exponent between 0.5 and

2, with values outside of this range leading to worse performance. While these

results are not statistically significant, they suggest that for interpolation methods

the relative weights of models is important. More specifically, it seems that while

higher-order models should receive greater weight, increasing their weight beyond

a certain point decreases performance.
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Figure 6: Distribution of perplexity values when predicting strokes for the Back-Off
model

4 Experiment 2: Tabla Prediction from Audio

Taking inspiration from the ensemble methods used for symbolic tabla prediction,

here we use an ensemble of HMMs of different orders to predict the next-stroke

distribution, given a sequence of features vectors computed from a recording of a

synthesized tabla performance.

4.1 Method

We created synthetic training and test audio databases based on the 35 symbol-

ically encoded compositions, allowing us to use a much larger database (27,000

strokes) than has been previously been undertaken. The compositions were syn-

thesized using a sample-based technique described in [40] and each was saved as

a WAV file (44.1 kHz, 16 bit). First, each nominal stroke name was mapped to
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an acoustic category. In other words, different names for the same timbre were

mapped to a single stroke type. The strokes used for synthesis are given in Ta-

ble 2.1. For occurrence of each stroke type, the synthesis algorithm chose from

among approximately 10 samples recorded by a professional tabla player, preserv-

ing some of the natural variability of a real performance. Each composition was

also synthesized using a completely different set of samples that came from a dif-

ferent performer and drum to make the recognition task more difficult and realistic.

The synthesized compositions can be heard at http://paragchordia.com/jnmrTabla.

The time stamp of each stroke onset was also saved in a text file, and was later

used for segmentation.

Next, the audio files and their corresponding time-stamps were read into MAT-

LAB. The audio was segmented into individual strokes using the time-stamps. It

remains for future work to automatically detect the onsets. From previous work

we know that the main difficulty of detecting onsets is masking due to loud ring-

ing strokes. Nevertheless, in non-archival recordings, recall and precision rates for

tabla onsets are typically high. For each stroke, the first 21 MFCCs were computed

and the 0th coefficient, representing signal energy, was discarded. Features were

calculated on the entire stroke, without breaking it into smaller frames; the FFT

length was equal to the size of the stroke, resulting in a high-resolution spectrum

as nearly all strokes were longer than 4096 sample frames at a sampling rate of

44.1kHz.

The testing and training feature vectors for each composition, along with the

parameters of the multivariate Gaussian (MVG) for each stroke type, were passed

to the VLHMM, which is described next.
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4.2 Variable-length Hidden Markov Model

Figure 7: A portion of the Variable-Length Hidden Markov Model is shown un-
folded for several time-steps

The models described in Section 2.2 can be used if symbols can be directly

observed or easily derived from the representation. The situation is more compli-

cated when dealing with audio. Information, such as when an event begins and

what its pitch is, must be extracted using digital signal processing (DSP) tech-

niques. There are two basic approaches: prior to modeling, DSP can be used to

create symbol sequences by segmenting and labeling events, or a HMM that jointly

considers the state sequence and observations can be applied.

Generative models, such as HMMs, are based on computing the joint prob-

ability P (Xt, St), where Xt = {x1, . . . , xt} is a sequence of observations, and
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Figure 8: Comparison between number of nodes in the PST at a given level vs.
the theoretical maximum

St = {s1, . . . , st} is the corresponding sequence of discrete labels or states. In a

HMM, to simplify inference, two independence assumptions are made: 1) xi is in-

dependent of all other observations, given si, and 2) st depends only on st−1. With

these assumptions, the joint distribution can be factored as follows: P (Xt, St) =

P (x1|s1)P (s1)
∏T

i=1 P (si|si−1)P (xi|si). The relationship between observation and

hidden state is given by an observation distribution Pi(xt|st)(i ∈ {1, . . . , N}, where

N is the number of states). A HMM, then, is defined by a transition distri-

bution A = [aij] (aij = P (st = j|st−1 = i)), a set of observation probability

measures B = {bi(St)}Ni=1 (bi(St) = Pi(xt|st)), and an initial-state distribution π

(πi = P (s1) = i). Observations may be continuous or discrete. Prediction, in

this context, means computing the next-symbol distribution given the observed

sequence: P (st+1|Xt, A,B). This can be solved efficiently by using the well-known

forward algorithm (with a trivial modification to omit the emission probability

26



for the unknown observation at time t + 1) [31] . If A and B are unknown, they

can be estimated from training sequences using the Baum-Welch algorithm [6], an

instance of the generalized expectation-maximization algorithm [22].

Next we describe the extension of the HMM to variable-order framework for

tabla prediciton. The VLHMM consists of an ensemble of fixed-order HMMs, up

to some maximum order. In practice, VLHMMs or mixed-order HMMs, become

useful by considering a reduced set of transitions and contexts, specified using a

PST [39]. The underlying PST might be learned from symbolic data (as we do

here), or might be inferred from unlabeled sequences [42].

Here, the hidden states of the HMM correspond to tabla strokes, and the

observation are the features vectors (MFCCs) computed from the audio. For

a given fixed-order HMM, the next-stroke distribution can easily be computed

by using the forward probabilities, which can be interpreted as the likelihood of

reaching a given state at a given time-step, having correctly emitted all the features

vectors up to that time. The fundamental complexity, compared to the visible case

is that we must now consider all possible paths to that node, since we cannot be

sure which path is correct. Fortunately, we do not need to exhaustively enumerate

all the paths but can recursively compute the forward probabilities, as we describe

below.

Still, such an algorithm has a time complexity that increases as a square of the

number of states. This problem is particularly severe for high-order HMMs. A

high-order HMM can be made into an equivalent first-order HMM by increasing

the state space. For example, if we have 10 states then, the second-order HMM

is equivalent to a 100-state first-order HMM, representing all the bi-gram state

combinations. Thus the time-complexity can quickly become unmanageable, and
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for this reason high-order HMMs and VLHMMs are not widely used. Our ap-

proach is to consider a much reduced set of paths given in the PST. We use our

symbolic data to learn which paths are in fact valid, and only compute the forward

probabilities for these paths.

Each node in the PST corresponds to a given stroke type and has an emission

distribution associated with it. Here we use a MVG with a covariance matrix that

is pooled across all strokes. In a high-order HMM, the emission distribution might

depend not just on the current state, but on several previous states. This would

allow us to capture differences in the feature vectors due to interactions between

adjacent strokes. For example the timbre of a stroke might differ depending on

the previous stroke, both because the previous stroke might still be ringing, and

because the fingering might be altered by the previous stroke. We leave this for

future work, and here we simply use one MVG per stroke.

The mean vector and covariance matrix for each class, were estimated on the

labeled training data and are passed directly to the HMM for use in the emission

distributions. These were left clamped and were not adjusted by the forward-

backward algorithm. The PST (Section 2.2) also stores the probability of arriving

at a given node by a certain path; we simply multiply the probabilities at each

node along the path. Thus the transition probabilites are efficiently stored in

the PST. Note that because the PST is sparse, i.e. most high-order n-grams are

unseen, this is much more efficient than storing all possible n-grams of a given

length. Notice also that we are exploiting the fact that symbolic data is readily

available, a key advantage in music problems compared with speech and other

HMM application areas. Further, because hidden states correspond to strokes,

and thus have a simple interpretation, estimating the parameters of the MVG can
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be done beforehand without using the forward-backward algorithm.

Formally our problem is the following. Given a sequence of observations Ot =

{x1, x2, x3, ..., xt}, what is P (ωj
t+1|Ot) for j = 1, ..., c, where c is the number of

categories, and P (ωj
t+1) represent the probability of the jth stroke at time t + 1.

If we know the forward probability at time t for each stroke category, then this

would simply be P (ωj
t+1|Ot) =

∑c
i=1 α

t
iaij, where αt

i is the probability of being in

stroke category i at time t having emitted Ot. If aij is the probablity of making a

transition from i to j then the forward probabilities can be calculated recursively

as follows:

αt
j =

c∑
i=1

αt−1
i aijP (xt|ωj) (2)

However, as noted earlier this quickly becomes intractable as the state space

is expanded to deal with high-order transitions. The PST allows us to consider a

much smaller number of terms in this sum. In particular, to calculate P (ωj
t+1|Ot),

for an HMM of order m, we look for all nodes at level m + 1 that correspond to

category j. Let the set of such nodes be A. The total number of nodes that fit this

definition will be the number of terms in our sum, which will in general be much

less than the theoretical maximum. Since each node has only one parent, we simply

multiply the forward probability of the parent node by the transition probability

from the parent to child. These partial probabilities are then summed for all i ∈ A

to get P (ωj
t+1). In other words, we now have αt

j =
∑

i∈A α
t−1
i aijP (xt|ωj). Figure 8

shows how the number of nodes grows with the depth of the tree for this data

set compared with the theoretical maximum given by cm. Between order 2 and 3

the number of possible nodes explodes, however the actual number of nodes in the
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Order 0 Order 1 Order 2 Order 3

Average 2.64 2.45 2.50 2.31

Median 1.23 1.20 1.20 1.16

Table 4: Graph showing the change in perplexity with increasing order of the
VLHMM

PST is approximately an order of magnitude less than this.

What we have described so far is still a fixed order HMM. We can now ex-

tend this to a variable-length model by incorporating the smoothing techniques

described in Section 2.3. Based on the results of the previous experiment, we

decided to use the 1/N weighting scheme for smoothing. This weighted average

across model orders gives us the combined next symbol distribution.

4.3 Results and Discussion

Evaluation was done using the same leave-one-out framework at the song-level. As

noted above, the test song was synthesized using different samples than the training

songs. For each test song, the entropy (and hence perplexity) was computed at each

time step. The results are given in Table 5. It can be seen that the perplexity shows

a small downward trend with the maximum order of the VLHMM. A multiple

comparison of means test, using the Tukey-Cramer statistic, shows that differences

between the various order VLHMMs are all significant at the .01 level, with the

exception of the difference between order 1 and 2. One important point to note

when comparing with the symbolic results is that here only 9 symbols were used

compared with 35 for the symbolic data. Thus the same perplexity values for the

symbolic data represent a better performance relative to the random baseline.
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Order 0 Order 1 Order 2 Order 3 Composition Type

Song 1 1.82 1.71 1.75 1.72 qaida

Song 2 4.79 4.38 4.36 4.3 laggi

Song 3 2.06 1.95 1.89 1.83 qaida

Song 4 2.77 2.47 2.4 2.35 qaida

Song 5 2.9 2.67 2.53 2.44 qaida

Song 6 2.22 2.06 2.01 2.02 qaida

Song 7 4.3 4.08 3.95 3.78 qaida

Song 8 1.59 1.47 1.44 1.41 rela

Song 9 2.06 1.97 2.9 1.84 rela

Song 10 2.03 1.97 1.93 1.89 tukda

Song 11 2.33 2.26 2.26 2.28 gat

Song 12 2.34 2.34 2.33 2.29 chakradhar

Song 13 1.94 1.83 1.82 1.8 qaida

Song 14 2.61 2.41 2.35 2.27 qaida

Song 15 3.06 2.85 2.81 2.74 qaida

Song 16 1.66 1.53 1.45 1.4 rela

Song 17 1.92 1.87 1.83 1.79 tukda

Song 18 3.4 3.11 2.97 2.83 gat

Song 19 2.31 2.19 2.13 2.14 chakradhar

Song 20 2.54 2.23 2.13 2.1 qaida

Song 21 2.66 2.32 2.23 2.16 qaida

Song 22 1.63 1.55 1.68 1.39 rela

Song 23 2.66 2.53 2.48 2.4 tukda

Song 24 3.95 3.53 3.39 3.23 gat

Song 25 2.89 2.77 2.73 2.6 chakradhar

Song 26 2.24 2.07 2.07 2.03 qaida

Song 27 2.26 2.11 2.05 2.03 qaida

Song 28 2.19 1.98 1.88 1.79 rela

Song 29 3.05 2.9 2.82 2.7 tukda

Song 30 31.24 28.35 27.29 26.73 gat

Song 31 4.42 4.46 4.39 4.31 chakradhar

Song 32 3.81 3.74 3.65 3.68 keharva

Song 33 21.21 15.16 13.73 13.55 keharva

Song 34 9.19 8.15 8.07 7.86 dadra

Median 2.575 2.33 2.34 2.275

Table 5: Average perplexity for each test song, and the median perplexity across
all test songs for each order. 31



The order 0 model is a special case and represents a lower bound on the per-

plexity rather than a true estimate. This is because we do not attempt to predict

the next stroke. We simply calculate the posterior distribution given the current

feature vector and use this distribution to compute the entropy and perplexity. In

the other models there is no evidence to at the t+ 1 step to guide the prediction.

The order 0 model has much more information, and its perplexity is thus overly

optimistic.

There is substantial variation of perplexity between pieces, with the VLHMM

performing significantly better on some compositions than others. For example,

the order 3 VLHMM ranges from a perplexity of 1.71 (Song 1) to 26.73 (Song

30)! Certain songs, such as 30, 33, and 34 proved difficult to model. However the

models failure was instructive. Song 30 was a complex fixed composition (gat) with

bol patterns quite different from the rest of the songs. Moreover it was composed

in a rhythmic cycle of 12, whereas most of the composition are set to a rhythmic

cycle of 16. This leads to patterns that are grouped in triples rather than duples.

Song 33 was a keharva theka, and song 34 was a dadra theka. Ironically, while

these are amongst the most internally repetitive songs, they are outliers in terms

of their structure. Thus the most severe failures seem to stem from the VLHMMs

inability to adapt to song-specific patterns.

Another source of error is the lack of the models knowledge about exact repe-

tition. Nearly 40% of the compositions are qaidas. As we briefly noted in Section

1, these compositions are structured using almost exact repetition. Future models

could be improved by augmenting the VLHMM with explicit, high-level formal

knowledge, and by creating an STM.

Interestingly, Table 5 shows that there are systematic differences between types
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of compositions. The average perplexity for qaidas is 2.25, 1.57 for emphrelas,

4.97 for fixed compositions such as emphgats and emphtukdas, and 7.34 for the

remaining, which are thekas. This is what would be expected from music theory.

Relas, compositions that have long-sequences of repeated closed strokes, giving

them their drum-roll feel, tend to be smooth and predictable. Qaidas are also

somewhat predictable because of the strict way in which variations are formed

from the theme. Fixed compositions on the other hand are often described as

unpredictable, with unusual turns and juxtapositions of strokes. It is satisfying

that the statistical model was able to quantify these qualitative assessments.

Despite the significant reductions in computation due to the PST, high-order

models for a large database are still costly to compute. Computing the full VLH-

MMs for order 1, 2 and 3 took .066, .198, and .534 seconds per stroke on a 2X3

GHz Mac. With our current implementation, orders 2 and 3 are too slow for re-

altime use. We are currently exploring methods for further pruning the PST to

speed up computation.

5 Conclusions and Future Work

We have developed a model of tabla sequences based on VLMMs and VLHMMs.

To the best of our knowledge this is the first use of VLHMMs for music prediction.

When predicting the next stroke or duration of a tabla composition VLMMs are

highly predictive, with a minimum perplexity of 1.80 using a median perplexity

of 1.07 using Multiple Viewpoint modeling. Incorporating a short-term model

substantially improves performance compared with only using a corpus-wide long-

term model. The reflects the fact that patterns in musical pieces often differ
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substantially from corpus-wide patterns, while being internally quite consistent.

Moreover we showed that the incorporation of additional rhythmic viewpoints

leads to small, but statistically significant improvements in the entropy of stroke

predictions.

We have also shown that VLHMMs can be used to predict stroke continuations

from audio. Our approach was based on computing the forward probabilities, for

the high-order HMMs that constitute the VLHMM, efficiently using a PST that

had been learned from stroke patterns in the symbolic data. Increasing the max-

imum model order from 1 to 3 decreases perplexity by a small but highly statis-

tically significant, difference. Depending on the application, the computational

burden of computing the high-order HMM is probably not justifiable given this

performance improvement.

However, currently there is no analog to the STM in the hidden framework.

Since the strokes are not visible it is more difficult to learn the song-specific n-

grams. One approach that we plan to try is to allow the transition probabilities

to adapt within a song, using the forward-backward algorithm. Results from the

symbolic domain suggest that incorporating such song-level information could lead

to dramatic improvements. For high-order HMMs, it may be the case that a song

is not sufficiently long to adapt the background (LTM) model. A hybrid approach

might be to cluster together compositions in the database that are similar, to form

what might be called medium-term models (MTMs). When processing a song, the

perplexity for each MTM could be calculated for the first few phrases, and the

best MTM could then be used as in addition to the LTM, just as the STM is used

in the symbolic prediction case.

34



6 Acknowledgements

This material is based upon work supported by the National Science Foundation

under Grant no. IIS-0855758.

References

[1] C. Ames. The Markov process as a compositional model: A survey and tutorial.

Leonardo, 22(2):175–187, 1989.

[2] G. Assayag and S. Dubnov. Universal prediction applied to stylistic music genera-

tion. In Mathematics and Music, pages 147–160. Springer-Verlag, 2002.

[3] G. Assayag and S. Dubnov. Using factor oracles for machine improvisation. Soft

Computing - A Fusion of Foundations, Methodologies and Applications, 8(9):604–

610, 2004.

[4] G. Assayag, S. Dubnov, and O. Delerue. Guessing the composer’s mind: apply-

ing universal prediction to musical style. In Proceedings of the 1999 International

Computer Music Conference, pages 496–499. San Francisco: ICMA, 1999.

[5] J. Aucouturier, F. Pachet, and M. Sandler. The way it sounds: Timbre models for

analysis and retrieval of polyphonic music signals. IEEE Transactions on Multime-

dia, 7(6):1028–1035, 2005.

[6] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring

in the statistical analysis of probabilistic functions of Markov chains. The Annals

of Mathematical Statistics, 41:164–171, 1970.

[7] B. Bell and J. Kippen. Bol processor grammars. Understanding music with AI:

perspectives on music cognition, pages 366–400, 1992.

35



[8] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice Hall, 1990.

[9] Y. Bengio, V.-P. Lauzon, and R. Ducharme. Experiments on the application of

IOHMMs to model financial returns series. IEEE Transactions on Neural Networks,

12(1):113 – 123, 2001.

[10] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A maximum entropy approach

to natural language processing. Computational Linguistics, 22(1):39–71, 1996.

[11] S. Chen and J. Goodman. An empirical study of smoothing techniques for language

modeling. In Proceedings of the 34th Annual Meeting of the ACL, pages 310–318.

Association for Computational Linguistics, 1996.

[12] P. Chordia. Automatic Transcription of Solo Tabla Music. PhD thesis, Stanford

University, Dec. 2005.

[13] P. Chordia, A. Albin, and A. Sastry. Evaluating multiple viewpoints models of tabla

sequences. In ACM Multimedia Workshop on Music and Machine Learning, 2010.

[14] P. Chordia, A. Sastry, T. Mallikarjuna, and A. Albin. Multiple viewpoints modeling

of tabla sequences. In Proceedings of International Conference on Music Informa-

tion Retrieval, 2010.

[15] J. Cleary and W. Teahan. Experiments on the zero frequency problem. In Proceed-

ings of Data Compression Conference, DCC ’95, page 480, 28-30 1995.

[16] D. Conklin. Prediction and entropy of music. Master’s thesis, University of Calgary

(Canada), 1990.

[17] D. Conklin. Music generation from statistical models. In Proceedings of the AISB

2003 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences,

pages 30–35, 2003.

36



[18] D. Conklin and C. Anagnostopoulou. Representation and discovery of multiple

viewpoint patterns. In Proceedings of the 2001 International Computer Music Con-

ference, pages 479–485. International Computer Music Association, 2001.

[19] D. Conklin and J. G. Cleary. Modelling and generating music using multiple view-

points. In Proceedings of the First Workshop on AI and Music, pages 125–137,

Menlo Park, CA, 1988. AAAI Press.

[20] D. Conklin and I. H. Witten. Multiple viewpoint systems for music prediction.

Journal of New Music Research, 24:51–73, 1995.

[21] A. Cont, S. Dubnov, and G. Assayag. Guidage: A fast audio query guided as-

semblage. In Proceedings of International Computer Music Conference (ICMC).

Copenhagen, September 2007.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-

plete data via the em algorithm. Journal of the Royal Statistical Society, Series B,

39(1):1–38, 1977.

[23] S. Dubnov. Analysis of musical structure in audio and midi using information rate.

In Proceedings of International Computer Music Conference. ICMC, 2006.

[24] S. Dubnov, G. Assayag, and A. Cont. Audio oracle: A new algorithm for fast learn-

ing of audio structures. In Proceedings of International Computer Music Conference

(ICMC). Copenhagen, September 2007.

[25] S. Dubnov, G. Assayag, and R. El-Yaniv. Universal classification applied to musical

sequences. In Proceedings of the 1998 International Computer Music Conference,

pages 332–340. San Francisco: ICMA, 1998.

[26] S. Dubnov, G. Assayag, O. Lartillot, and G. Bejerano. Using machine-learning

methods for musical style modeling. IEEE Computers, 36(10):73–80, 2003.

37



[27] A. E. Dutta. Tabla: Lessons and Practice. Ali Akbar College, 1995.

[28] S. R. Eddy. Hidden Markov models. Current Opinion in Structural Biology, 6(3):361

– 365, 1996.

[29] O. Gillet and G. Richard. Supervised and unsupervised sequence modeling for drum

transcription. In Proceedings of International Conference on Music Information

Retrieval, pages 219–224, 2007.

[30] D. Huron. Sweet Anticipation: Music and the Psychology of Expectation. MIT

Press, 2006.

[31] B. H. Juang and L. R. Rabiner. Hidden Markov models for speech recognition.

Technometrics, 33(3):251–272, 1991.

[32] O. Lartillot, S. Dubnov, G. Assayag, and G. Bejerano. Automatic modelling of

musical style. In Proceedings of the 2001 International Computer Music Conference,

pages 447–454. San Francisco: ICMA, 2001.

[33] K. Lee and M. Slaney. A unified system for chord transcription and key extraction

using hidden Markov models. In Proceedings of International Conference on Music

Information Retrieval, 2007.

[34] C. Manning and H. Schutze. Foundations of Statistical Natural Language Processing,

pages 60–78. MIT Press, 2002.

[35] F. Pachet. The continuator: Musical interaction with style. In Proceedings of

International Computer Music Conference, Gotheborg (Sweden), ICMA, pages 211–

218, 2002.

38



[36] Pearce, H. Ruiz, Kapasi, Wiggins, and Bhattacharya. Unsupervised statistical

learning underpins computational, behavioural and neural manifestations of mu-

sical expectation. NeuroImage, 50(1):302–313, 2010.

[37] M. Pearce. The Construction and Evaluation of Statistical Models of Melodic Struc-

ture in Music Perception and Cognition. PhD thesis, City University, London, 2005.

[38] M. Pearce, D. Conklin, and G. Wiggins. Methods for Combining Statistical Models

of Music, volume 3310, pages 295–312. Springer Berlin, 2005.

[39] J. A. D. Preez, P. D. E. Barnard, and D. D. M. Weber. Efficient high-order hid-

den markov modelling. In Proceedings of the International Conference on Spoken

Language Processing, pages 2911–2914, 1998.

[40] A. Rae. Generative rhythmic models. Master’s thesis, Georgia Institute of Tech-

nology (Georgia), 2008.

[41] A. Rae and P. Chordia. Tabla gyan: An artificial tabla improviser. In First Inter-

national Conference on Computational Creativity (ICCCX), 2010.

[42] L. Schwardt and J. D. Preez. Efficient mixed-order hidden markov model inference.

In International Conference on Spoken Language Processing, 2000.
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