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• Based on observations, experiences, opinions of me & my echo chamber

• Mileage may vary 

• Views of my own

• Try to be as honest as I can be

• Hypothetical examples (mostly)

Disclaimers



How did I end up here?
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• BSc in Electrical and Electronics Eng, Classical Guitar Certificate from a Music School

• MSc @ Georgia Tech Center for Music Technology (2009 – 2011)

• PhD @ Music Technology Group, UPF (2011 – 2017) 

• Part Time Data Science Consultant @ Music and Sound Cultures Research Group, New 

York University, Abu Dhabi (June 2019 – cont.)

About Me (in academia)



• Worked on many different topics and music traditions
• Audio-score alignment, makam/raga recognition, music corpus analysis and 

discovery, ontologies, music prediction and generation, interactive music, …

• Turkish makam, Hindustani, Carnatic …

• Gained decent developer skills
• Python, git, issue tracking, testing, continuous integration

• Advocated open source & reproducible research
• Build my own toolbox, created/contributed to more than 10 corpora/datasets

• Work available online at https://dunya.compmusic.upf.edu/

• Gave many talks and seminars

About Me (circa 2017)

nothing really relevant to the industry

pretty desirable anywhere

visibility helps

https://dunya.compmusic.upf.edu/


• Applied to ~5 postdocs

• Got 1 offer

• Feedback: Worked on a very specific music style / topic, have specific skills

• Applied to only 1 position in the industry
• Got an offer

• Feedback: Worked on diverse topics, good developer skills

• Note: Both feedback are meaningful; perspectives are different

• Postdoc: Transferable work, research output, paper writing, supervision, …

• DS: Transferable foundations, delivery record, presentation skills, mentoring, …

Switching to the industry

TIP: Both are just a job, and a job is not more than what it is 



• Senior Data Scientist @ SoundCloud (summer 2017)

• Senior → Lead Data Scientist, R&D @ Kobalt Music Group (2018 – )

About Me (in the industry)



The Music Industry
(from a royalty perspective)
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OPAQUENESS
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• Entity Recognition (Metadata Matching)

• Knowledge Graphs

• Music Autotagging

• Audio fingerprinting and version identification

• Music Similarity

• Predictive analytics (for artists, copyright orgs etc.)

• Recommendations (to creators, marketing etc.)

• Music generation

Potential data-driven tasks in copyright companies



How does the industry work?
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• Business
• e.g. in Kobalt: Label, publisher, collection society, synch, neighbouring rights, …

• Product
• Identifies problems (beyond symptoms) and new opportunities 
• Captures requirements, sets strategy and planning to bring a solution as well as features

i.e. why, what, and when an engineering team builds of a product
• Communicates between the business and engineering

• Tech
• Builders: Backend, frontend, QA, data engineer, research scientist, …

• Ideally autonomous in choosing the product solutions

• Delivery, design, …

Organization in High-Level



• Can be grouped into business units, functions, and/or roles
• Publishing Tech, “Creators”, Data

• Different approaches
• Pyramid, Matrix, “Spotify” model, … 

• Very fluid from org to org, with organization size, and in time
• “Re-orgs” happen all the time

• In our level, teams are more interesting:
• Units dealing with a tangible product, task etc.

• Personalized recommendations, audio fingerprinting, cloud infrastructure, …

• Mostly (or at least aimed to be) self-sufficient

Organization Structure



• Agile (http://agilemanifesto.org/)
• Iterative changes, constant feedback, responsive to change, …
• Scrum vs Kanban
• For research teams it gets vague…

• Vision – Mission
• Long Term Plans

• Roadmap, end of year success criteria

• Objectives and key results (OKR)
• Monthly, quarterly etc…
• Planning, design and product management intensive

“stakeholder” management, requirements capturing, user story mapping, tech/design review…

• Approval by upper management
• Agreed by stakeholders before the cycle starts
• Progress scored in shorter intervals (e.g. two weeks) and communicated to the stakeholders

Ways of Working in Tech Teams

http://agilemanifesto.org/


Objective: Improve the audio auto-tagging pipeline

KR1: Handle loads up to 10M recordings daily

KR2: Reduce the training time from 10 days to 8 hours

KR3: Monthly cost reduced by at least 30%

KR4: Improve Precision by 0.05

KR5: Reduce the manual ops from 3 full-time equivalent (FTE) to 2.5

OKR Example



Objective: Improve the audio auto-tagging pipeline 
we don’t know how much of improvements is enough, could be more precise

why do we need to improve it?
what’s wrong with the current solution?

KR1: Handle loads up to 10M recordings daily
KR2: Reduce the training time from 10 days to 8 hours
KR3: Monthly cost reduced by at least 30%
KR4: Improve Precision by 0.05
KR5: Reduce the manual ops from 3 full-time equivalent (FTE) to 2.5

3 types of KR here - scale, cost, quality; maybe there should be several objectives

OKR Feedback



Objective1: Unlock the growth of audio auto-tagging service into new markets

- We will reach the capacity of the solution (300k recordings per day) in 6 months. It will 

hinder our growth to new markets, reduce customer satisfaction, leading to churn

- Current model takes 10 days to train, which slows down our iterations, has a high risk of 

failure (3 out of 11 jobs last quarter), and makes it difficult to test and deploy. It takes up to 2 

full days of an engineer to monitor a training jobs.

KR1: Handle loads up to 10M recordings daily

KR2: Reduce the training time from 10 days to 8 hours

…

OKR Recap



• Maximize Return on Investment (ROI)

• Bring revenue

• Lower costs

• Minimize Opportunity Cost

• “the loss of potential gain from other alternatives when one alternative is 

chosen”

Why all the fuss?



Working in a “Data” Role
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• Data engineer

• Data analyst

• Data scientist

• ML engineer

• Research scientist

• ML scientist

• …

• Product manager

• Software Engineer

Data-related roles

v Overlapping functionalities

v Meanings differ from org to org or 

even by job specs

v New titles emerge all the time

v Traditional roles also start having ML 

deployment as a “good-to-have”



DS Ways of Working

• Pairing with/Getting embedded into teams

• Help (consultancy, training) another team to achieve data-driven objectives

• Impact/influence dependent on the attitude and trust

• Communication/convincing skills are crucial

• Cross business team

• Serving other parts of the organization (data lakes, internal ML tracking API)

• Operational (e.g. run predictions on a one-off tasks)

• Great to capture the inner workings and the overall picture



DS Ways of Working (2)

• Team building a product

• Very focused, dynamic, hands-on

• or (depending on the point of view) narrow-scoped, less exploration

• Depending on the team and expectations, it can be amazing or horrendous

• Research & Development

• Create or bring novel technologies & methods into the organization

• Most independent, but you should still have impact

• Typically there are other teams who productionize proof of concepts



Data Science Cycle
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Example ML Production Cycle

Data ETL

Experimentation
Production



• Cloud Computing

• AWS, Google Cloud, Azure, …

• Microservices

• Docker – one functionality/task/job per container

• API-driven

• Big Data

• AWS EMR, Google Big Query, EC2 with GPU attached etc. …

• Scala/Spark

• Large (but not infinite) resources

• Data Science Ecosystem

• Very similar to academia (Jupyter, pandas, tensorflow, Keras, pytorch, seaborn …)

• 3rd party tools (Amazon Sagemaker, Glue, Databricks Platform, ElasticSearch, …)

• Software Developer/Engineer Skills

• Unit tests, PRs, Code Style, Continuous Integration/Deployment, Containerization, Infrastructure as Code, Databases, …

Tech Stack & Skills



• Your skills are transferable! Don’t make anyone tell you otherwise!

• Your work cycle may not change drastically

• But ways of working and responsibilities will change (occasionally)

• Communication is sometimes the most important part

• Good manager/team is preferable than a well-known company/area

• In many cases, Data > ML models in the industry

• Learn about software development (before), cloud computing and 

production processes (on the job)

Wrap-Up



• Chip Huyen (2020). Machine Learning Production Pipeline. ICML

• Allen AI (2018). Writing Code for NLP Research. EMNLP

• Ed Newton-Rex (2019). Six Principles Of Applied Research. Medium Post

• Martin Zinkevich (2018). Best Practices for ML Engineering. Google Developers

• Erik Bernhardsson (2020). Never attribute to stupidity that which is adequately 

explained by opportunity cost. Personal Blog

• Agile Alliance (2001). Manifesto for Agile Software Development. 

• Andrej Karpathy (2018). Programming the 2.0 Stack. Full Stack Deep Learning

• Jeremiah Lee (2020). Failed #SquadGoals. Personal Blog

Resources

https://docs.google.com/presentation/d/1mvmJ1PnCe7lWGmSoL80CjLe7N2QpEwkU8x7l62BawME/edit
https://github.com/allenai/writing-code-for-nlp-research-emnlp2018/raw/master/writing_code_for_nlp_research.pdf
https://medium.com/on-coding/six-principles-of-applied-research-875de3b44ba0
https://developers.google.com/machine-learning/guides/rules-of-ml
https://erikbern.com/2020/03/10/never-attribute-to-stupidity-that-which-is-adequately-explained-by-opportunity-cost.html
http://agilemanifesto.org/
https://www.youtube.com/watch?v=ZVJTqAuPvTU
https://www.jeremiahlee.com/posts/failed-squad-goals/


Sertan Şentürk – Lead Data Scientist, R&D
Kobalt Music Group, London

@sertansenturk
contact@sertansenturk.com

https://www.sertansenturk.com

QUEST
IONS?


