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E Disclaimers

* | will try to cover a lot of bases

e But we will only touch the surface

« | will not have much time to be specific for each case

* Don’t hesitate at the moment to ask for more

* | wish to make more people aware

 Solcan getlazier » A



m ABOUT ME

« Since 2018: Data Scientist @ Kobalt Music Group
* Previously (& briefly) @ SoundCloud

« 2017: PhD @ Music Technology Group, Universitat Pompeu Fabra

« 2011: MSc @ Georgia Tech Center for Music Technology




Behind the scenes of the music industry



m MUSIC INDUSTRY IN BRIEF (!)
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E COMPLEX ECOSYSTEM
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E MULTI-LAYERED OPS
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E OPAQUENESS
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E SLOWNESS
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Metadata Problems



m AMBIGUITIES
L e N
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m CHALLENGES
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m ENTITY RECOGNITION
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m “IDEAL” SOLUTION

USE UNIVERSALLY UNIQUE IDENTIFIERS
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m DAMN!

THERE IS
NO AGREED, UNIVERSAL
DATA SOURCE
FOR MUSIC...



m MANY TRIED...

HOW STANDARDS PROUFERATE:
(66 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, E£TC)

SITUATION:

THERE ARE
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STANDPRDS.

¥?! RDICULOLS! GSOON:
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E START WITH YOUR OWN TURF

CLEAN ALL THE
THINGS!
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m DATA OPS

* Data modelling: Use the right model for right type of data
* Tabular information (e.g. client records)?: Relational Databases
* Unstructured/semi-structured data (e.g. tags)?: NoSQL Document Stores
* Relations, communities (e.g. chain of title)?: Graph Databases

* NOTE: There are many more things to consider! Just ask any information management

person!
* Quality
* Matching

*  Enrichment
* Reconciliation

* Master Data Management



m DATA OPS

* Data modelling
* Quality: Monitor the state of your metadata

* Completeness: How much information is available for a document, field or dataset?
®* Coverage: How well does a data source represent others?
* Does the data fulfil the expected types/constraints?

®* Anice tool: Amazon Deequ

* Matching
*  Enrichment
* Reconciliation

* Master Data Management


https://www.awsfeed.com/2019/05/16/test-data-quality-at-scale-with-deequ/

E DATA OPS

* Data modelling

* Quality

* Match and connect metadata as much as possible
* Deduplicate documents (Sertan Sentlrk vs. Sertan Sentuerk)
* Link relevant documents (recordings - works)

* Embrace linked data!
*  Enrichment
* Reconciliation

* Master Data Management



E DATA OPS

* Data modelling

* Quality

* Matching

* Enrich your metadata whenever you have the chance

* Fill missing values

Correct/standardize values
®* Fetch information from other sources

* Anice tool: http://holoclean.io/

* Reconciliation

* Master Data Management


http://holoclean.io/

m DATA OPS

* Data modelling
* Quality

* Matching

* Enrichment

* Reconciliation
* Merge information during deduplication
* Detect and resolve conflicting information: ontologies are a great help!

* Ensure the processes are not creating mess

* Master Data Management



E DATA OPS

* Data modelling
* Quality
* Matching
*  Enrichment
* Reconciliation
* Master Data Management
* Keep a track of all changes, sources etc.

* Maintain “golden” records

* Provide a single point of truth (as much as possible)



m SUGGESTIONS

Cleaning everything by hand is impossible/impractical
®* Heavy monitoring and automation

Yet keep the humans (experts with domain knowledge) in the loop:
® to deal with difficult/edge cases
®* to evaluate your automations

Problems will always linger
®* We have to minimize its impact

You cannot make your data clean and shiny in a single go
®* Fixiteratively
®* Each improvement will facilitate others

Play the long game

®* Turnitinto a habit/culture of the organization



m ULTIMATE GOAL: OPEN & LINKED DATA
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METADATA MATCHING



m METADATA MATCHING

- Has many names in the literature

* record linkage, data integration, entity recognition, identity resolution, ...

- People mean different things

* e.g.joining tables, enrichment, conflict resolution, ...

- Metadata matching: Creating a (named) link between documents
which are represent the same entity (same person in two

different datasets) or have a relationship (recording to its work)



m METADATA MATCHING (2)

Retrieval problem

* Sometimes ranked

Targets vs Queries

(Typically) binary relevance

Cardinalities vary depending on the task
* Recording to work: low

* Work to recording: higher



E EVALUATION

* Depending on the cardinality and use case, e.g.
*  Human (MAP, MRR) vs. Fully automatic (F,); needle in haystack (Prefer PR over

ROC-AUC); Low tolerance to false positives (Weight precision more than recall)

Queryl Query2 Query3 Queryd Query5

1 ] [ ] — — —
[ ] [ ] — — —
w 3 | ] [ ] — — —
S [ ] [ ] — — —
s s 3@ 3 43 3 C3
2 [ ] [ ] — —
8 7 | ] [ ] C— C—
— —
9 [
—
Misses - 1 - - -



EVERYONE HAS SIMILAR PROBLEMS

Jan Van Balen 9
@jvanbalen

¢ lnsurance hm ok thanks google

 Finance Jan van Balen : E
Painter b

C M a n Ufa Ct u ri ng OVERVIEW PERIOD PEOPLE ALSO SEARCH FOR

° M e d iCI n e Jan van Balen was a Flemish painter known for his

Baroque paintings of history and allegorical
subjects. He also painted landscapes and genre

° Online Sto res scenes. Wikipedia

Born: 21 July 1611, Antwerp, Belgium
Died: 14 March 1654, Antwerp, Belgium

Period: Baroque

Parents: Hendrick van Balen

10:21 am - 28 Sep 2019



m WHERE DO WE NEED MATCHING?

Usage processing: Match consumption reported by streaming services to works

Royalty processing: Match royalty statements to works

Onboarding: Merge entities (creators, works, recordings) in an external catalogue with the
internal catalogue

Deduplication: Find duplicate entities inside a catalogue

Enrichment: Match entities in an external catalogue with the internal catalogue to complete
missing information

Relation discovery: Identify missing links between entities (e.g. collaborators in an album)

Error resolution: ...



SOLUTIONS



E RULE-BASED SOLUTIONS

First choice to go
* Before big data era (till late 2000s)
* (many music businesses are still here)
°* Based on simple, deterministic decisions
* e.g. full/sub string match between separate fields and converting the results to a “match
percentage” according to some business logic
* Seems interpretable at first, but rules/logic explode as time passes
* Spurious and/or conflicting rules
* Does not scale beyond small data (>10k documents)
* Does not generalize to different tasks
°* Don’t worry if you are at this stage

* You can use the system to collect initial data to evaluate future methods




m OUT OF BOX SOLUTIONS

* |If you don’t have engineering resources or time

* No need to build or maintain much infrastructure

Q
®© o ©
AWS Glue ETL Service o _©
X KX
...
O ° O DATA UNITED

* “FindMatches” ML transform ° Pioneer DataOPS start-up

*  Works hand-to-hand with Lake Formation * Does more than matching


https://docs.aws.amazon.com/glue/latest/dg/machine-learning.html

m COMMON APPROACHES

Queries

Blocking

Cheap

Robust
“Not-So-Intelligent”
High Recall — Low
Precision

Targets

Candidates

>

Filtering

More Expensive
Performant
“Intelligent”

High Precision wo
Sacrificing Recall

Matches

>



m APPROACHES

Queries

Blocking

TF-IDF

String Similarity
Edit Distance
Jaccard distance

Targets

Candidates

>

Filtering

Statistical /
Probabilistic
Methods

Machine Learning

Matches

>



m ELASTICSEARCH

Blocking Filtering
— . = |- sutistcal .
Queries - Candidates Probabilistic Matches
_ Methods
elasticsearch - Machine Learning

Targets

Sentirk, S. (2019). Music metadata matching using ElasticSearch. London ElasticSearch Meetup


https://sertansenturk.com/uploads/presentations/senturk2019elasticsearchMatching_meetup.pptx

m FILTERING USING ML

Queries

Blocking

LI
\

elasticsearch

Filtering
- Traditional ML

Targets

g . )
Candidates Logistic regression,

Bayesian models,
tree-based methods...

Matches

At first, focus on building an infrastructure
(experimentation / production pipelines, data
labeling workflows etc.) rather than improving the

model

Nice tool: Snorkel for weakly labelling data


https://www.snorkel.org/

E WHERE IS DEEP LEARNING!?

» Late adoption in the academia & industry

« “deepmatcher” (Sigmod 2018)

How does DL architectures fare against SOTA?
(Does not outperform for structured data yet)
SIF, RNN, attention-based & hybrid models
using word embeddings

Code (Github)

Also evaluated on (rather small-sized) music

metadata (Demo)

1. Attribute Embedding

2. Attribute Similarity
Representation

3. Classification

[[] Neural Network (NN)

NNs with the same
pattern share parameters

Attr 1 Attr 2 Attr 3
i } 4
= = =
L v
3 4 -

%, 2
' 4 {
i
[
'

} Sequences of Words

)

Sequences of
Word Embeddings

} Attribute Similarity

}

Entity Similarity

Mudgal, Sidharth, et al. "Deep learning for entity matching: A design space exploration."

Proceedings of the 2018 International Conference on Management of Data. ACM, 2018.


https://github.com/anhaidgroup/deepmatcher
https://nbviewer.jupyter.org/github/anhaidgroup/deepmatcher/blob/master/examples/getting_started.ipynb
http://dit.unitn.it/~pavel/OM/articles/Mudgal_sigmod18.pdf

m GRAPH-BASED APPROACHES

Knowledge Graph

bornin Vienna
Webern mentioned nin bornin
mentioned
Schoenberg
hasRole Berg —mentioned
hasRoIe\ s
hasRole tedin
composer
conductor
hasRole Los Angeles
_diedin_——
hasRole _ Jelly Roll Morton
pianist

weenre
/ bornin

New Orleans

Universitat MTG
UPS.| Pompen Fabra  Music Technalogy 32

« node2vec: http://snap.stanford.edu/node2vec/

« Graph Convolution Neural Networks

Oramas, S., & Sordo, M. (2015) Knowledge acquisition from music digital libraries. IAML/IMS Congress



http://snap.stanford.edu/node2vec/
https://www.slideshare.net/soramas/knowledge-acquisition-from-music-digital-libraries

E SUMMARY

* Music metadata is (to put it kindly) bad...
* Why?!?
* uncoordinated supply chains, data quality issues, absence of trust, lack of data

literacy, human errors, and national politics...

*  What should we do?
* First, clean your own turf
* Follow information management best practices and embrace linked data principles

* Connect your metadata with others



E SUMMARY (2)

* Metadata matching is inevitable in the current ecosystem (and till eternity)!
* i.e.symptom of lack of interconnectivity between metadata resources
* |If you sweep your data problems under the carpet, they will hunt you later in the
form of matching...
* Remedy your problems before they become a sickness requiring a surgery...
*  Where should | start?
* Focus on a single use case; generalize later
* Spend time on understanding the use case, pick a relevant eval measure, collect data
* Blocking using ElasticSearch; use simple ML models (e.g. tree-based) based on TF-IDF

to filter candidates



E RESOURCES

* Conferences: Sigmod, VLDB, SigkDD

* Academics: Michael Stonebraker (MIT CSail), lhab Francis llyas (Uni Waterloo), AnHai Doan

& Theodoros Rekatsinas (UW Madison), Xu Chu (Georgia Tech), Christopher Ré (Stanford)

* Course Material: Duke Uni CompSci590.01, UW Madison CS 838

* Companies: Tamr, Trifacta

* Tools: AWS Lake Formation, ElasticSearch, Apache TinkerPop

Magellan, deepmatcher, py stringmatching, py stringsimjoin

Snorkel, HoloClean

Deequ


https://sigmod.org/
https://vldb.org/
https://www.kdd.org/
https://www.csail.mit.edu/person/michael-stonebraker
https://cs.uwaterloo.ca/~ilyas/
http://pages.cs.wisc.edu/~anhai/
http://pages.cs.wisc.edu/~thodrek/
https://www.cc.gatech.edu/~xchu33/
https://cs.stanford.edu/people/chrismre/
https://sites.duke.edu/compsci590_01_s2017
https://sites.google.com/site/anhaidgroup/courses/cs-838-spring-2019
https://www.tamr.com/
https://www.trifacta.com/
https://aws.amazon.com/lake-formation/
https://www.elastic.co/products/elasticsearch
http://tinkerpop.apache.org/
https://sites.google.com/site/anhaidgroup/projects/magellan
https://github.com/anhaidgroup/deepmatcher
https://sites.google.com/site/anhaidgroup/projects/magellan/py_stringmatching
https://sites.google.com/site/anhaidgroup/projects/magellan/py_stringsimjoin
https://www.snorkel.org/
http://holoclean.io/
https://www.awsfeed.com/2019/05/16/test-data-quality-at-scale-with-deequ/

E FURTHER READING

* Stonebraker, M., & llyas, I. F. (2018). Data integration: The current status and the way
forward. IEEE Data Eng. Bull., 41(2), 3-9.

* Hellerstein, J. M. (2008). Quantitative data cleaning for large databases. United Nations

Economic Commission for Europe (UNECE).

* Oramas, S., & Sordo, M. (2015) Knowledge acquisition from music digital libraries.

IAML/IMS Congress

* Allemang, D., & Hendler, J. (2011). Semantic web for the working ontologist: effective

modeling in RDFS and OWL. Elsevier.

* Kipf, T. (2016). Graph convolutional networks. Self-Published

* Sentirk, S. (2019). Music metadata matching using ElasticSearch. London ElasticSearch

Meetup


https://cs.uwaterloo.ca/~ilyas/papers/StonebrakerIEEE2018.pdf
http://db.cs.berkeley.edu/jmh/papers/cleaning-unece.pdf
https://www.slideshare.net/soramas/knowledge-acquisition-from-music-digital-libraries
http://www.kevenlw.name/downloads/Ontologist.pdf
https://tkipf.github.io/graph-convolutional-networks/
https://sertansenturk.com/uploads/presentations/senturk2019elasticsearchMatching_meetup.pptx

m WE ARE GROWING
We are hiring!!!

Lots of positions and roles, incl.
data engineers at all levels

Speak with me

https://www.kobaltmusic.com/

company/careers



https://www.kobaltmusic.com/company/careers
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