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ARTIFICIAL INTELLIGENCE!
MACHINE LEARNING!

' Yann LeCun

@ylecun

If by "uprising" you mean "being able to fill
the dishwasher".

technologyreview.com/s/611424/this- ...
; Y
u_'

MACHINES
ARE
LEARNING!

This is how the robot uprising finally begins

Combining the latest advances in artificial intelligence with robots could transform
manufacturing and warehousing—and take Al to the next level.

technologyreview.com







QUESTIONS TO BE ANSWERED...

« What is machine learning (ML)?

« What is possible with ML?

« How does it (conceptually) work?
« What are the challenges?

« Common misconceptions/hypes
« How can we get into ML?

o Discussion: What can we do with ML in Kobalt?



WHAT TO EXPECT FROM THIS TALK

Quite high level
No math!
Conversations > Me talking whilst you eat

Emphasis to music/media technologies



(A) DEFINITION

“the field of study
that gives computers
the ability to learn
without being explicitly programmed”

Tom Mitchell, 1950s

~

Kind of early, isn’t it?

https://www.coursera.org/lecture/machine-learning/what-is-machine-learning-Ujm?7v



LEARNING FROM EXAMPLES




* You don’t code the movement itself,
but make the machine learn to move...
somehow ™



* ACTUAL RESULTS MAY VARY




WHAT IS THE
RELATIONSHIP BETWEEN
MACHINE LEARNING
All, MATH, DATA
STUFF?*

* roughly



Genetics
Telecommunications
Advertising

Robotics

Finance

Political Science

Mathematics
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Machine
Learning .p

Artificial
intelligence

Data Science

Computer
Science
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WHERE IS IT USED?

short answer: everywhere A _#
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WHAT TYPE OF
PROBLEMS CAN
MACHINE LEARNING SOLVE?



WHAT ML IS GOOD FOR?

* Difficult to formulate
* What would you like to listen today?

* Many facets affecting the outcome
* How will the stock market change in 6 months?

* Has a lot of special cases to consider
* Rigorous, repetitive tasks with limited time/resources

* Processing unstructured data
* audio, video, image, plain text
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TYPES OF PROBLEMS

* Classification: When you want to answer categorical questions...
* Regression: When you want to predict a quantity...
* Clustering: Finding groups with similar characteristics inside the data

 Feature selection/dimension reduction: Obtain (a combination of) most
representative information
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TYPES OF PROBLEMS: CLASSIFICATION

* Image classification

* Genre recognition

* Disease diagnosis

* Text categorization
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TYPES OF PROBLEMS

* House prices

* Temperature

* Artist revenue

* Melody tracking

-Q1-2016

org | Source:

www.




TYPES OF PROBLEMS: CLUSTERING

* Market segmentation
* Community discovery in social networks

* Anomaly detection

* e.g. server fault prediction, fraud detection . sswew ‘
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LEARNING APPROACHES

* Supervised Learning
* You have labeled data, which you feed to the model while training
 Commonly used in classification, regression etc.

* Unsupervised Learning
* You don’t use labeled data and let machine “discover” some structure
* Commonly used in clustering and feature learning tasks

* Reinforcement Learning
* The machine learns some action by rewarding/punishing the decisions
* Used in autonomous decision making: Games (Chess, Go, DOTA), robotics...
* Could still be supervised, unsupervised, semi-supervised etc.
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SOME PROBLEMS REQUIRE COMBINED SOLUTIONS

M ’

[
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Autonomous Driving

Supervised classification: Object recognition (e.g.
cars, people)

Supervised regression: Location, size etc. of the
objects

Reinforcement learning: Driving itself

Note: The problem might still be solved by a single

model
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CONCEPTUAL ML PROCESS

§ RESULT




ML STEP-BY-STEP: DATA PROCESSING

DATASET | EREED g FEATURES

N REDUCED
FEATURES

(ANNOTATED)
A

Labels are needed for supervised learning.
We are skipping unsupervised learning for simplicity’s sake.

PRETTY TASK/DOMAIN SPECIFIC!
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ML STEP-BY-STEP: DATA PROCESSING

Blackstar - David Bowi

hot through with moments of grace and

DATASET

tokenization

lemmatization

stop word removal

Mag norm
Mono conversion
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TF-IDF
n-grams
word2vec PCA
t-SNE
FFT

Beat Detection
Melody Analysis

v
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ML STEP-BY-STEP: MODEL TRAINING

Training / Optimization

Feature
Extraction
DATASET 4

Model

VUil Selection
SET ?

MACHINE
LEARNING
MODELS

SELECTED
ML MODEL

Results
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ML STEP-BY-STEP: ITERATIVE DESIGN

~ Improve
- the dataset

MODEL
DRI TRAINING
. Improve
- the model
SELECTED | ""R’esults

ML MODEL
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HOW CAN WE USE
MACHINE LEARNING
FOR MUSIC DATA?



Melody/pitch tracking
Chord recognition
Key/Mode detection
Tuning analysis

Onset detection

Beat tracking

Tempo estimation
Structural segmentation 3 ~

L1

Transcription FHH : 4
Instrument recognition o P \

Source-separation
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Created by: Spotify « 30 songs, 2 hr 9 min

Music similarity

Artist similarity

Genre recognition
Emotion recognition
Music auto-tagging
Music recommendation
Version identification
Fingerprinting

Query by humming
Audio-score alignment
Audio-lyrics alignment
Optical music recognition
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Blackstar -/David Bowie

Blackstarlis an inky labyrinth of human cruelty and frailty shot through with moments of grace and

transcendence, and obsessed with different kinds of transformation. And it’s another record on which each

song carves out its own unique space, with no room for repetitions or redundancies. Even Bowie’s"voice

never does the same thing twice. It’s haunted, wired, seductive, menacing, mischievous, kind: alfinal | multi-

faceted performance from pop’s great actor. Read more

Blackstar David Bowie
type: album <« type: musician
primaryArtistOf subtypeOf: person
sentiments vocalistOf genre: pop
finalAlbumOf

haunted, wired, seductive, menacing,
mischievous, kind, multi-faceted...
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Blackstar - David Bowie M ,

Blackstar is an inky labyrinth of human cruelty and frailty shot through with moments of grace and

Dalen Brown

transcendence, and obsessed with different kinds of transformation. And it’s another record on xm'hicﬁ%mﬁw ﬁi ‘ Spread Too Thin
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never does the same thing twice. It’s haunted, wired, seductive,

faceted performance from pop’s great actor. Read more
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ittsburgh Symphony Orchestra live from Berlin, Opening concert of Musikfest Berlin 2013



OH, ARE THEY
EASY TO DO?

nope N A



SOME COMMON PROBLEMS

* Requires A LOT OF computational resources
* Most need A LOT OF (labeled) data

* Needs high-level, in-house, technical expertise
* Data scientists, data engineers, and other case-specific roles

* Typically requires domain-specific knowledge

* Technical debt
e Requires rigorous evaluation
* Outcomes may be difficult to “understand” & “debug”
* Produces value after setting the appropriate data infrastructure
* Performance may degrade due to changes in data & requirements... 33



COMMON
MISCONCEPTIONS



RUN LIKE HELL IF YOU HEAR:

* ML is just math!

* ML is science fiction!

ML is a humanoid robot touching numbers projected to holograms!
* ML is the answer of life, the Universe and everything!

* ML will make humans obsolete!

* ML will destroy the world!

* ML will bring world peace!
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HOW CAN |
LEARN MACHINE LEARNING?



RESOURCES

* Online courses
* Coursera (Andrew Ng), fast.ai, Google machine learning resources, Udemy, ...

* Blogs

* OpenAl, Google DeepMind, Towards DataScience, AnalyticsVidhya, Kdnuggets,
Spotify Labs ...

e Software tools & documentation
* scikit-learn, tensorflow, pytorch, keras, Spark MLIib, ...

e Conferences, Journals, Archives
* [CML, NIPS, Strata Data Conference, IEEE, ACM, arxiv, ISMIR, ...

* Books
e Christopher Bishop, lan Goodfellow, Andrew Ng, David Barber... -



CONCLUSION

* Machine learning is not a myth
* It has been already utilized in every part of our daily lives...

* It is quite powerful

» after we define clear goals/business problems, make thorough
investigation, and build the proper infrastructure

* |t’s easy to start
* There are a lot of free and open source training/tools available

e But difficult to master

* Building & maintaining ML solutions require a fair amount of data,
skilled work force, automated processes, and planning... 39







